結果
| 問題 | No.2250 Split Permutation | 
| コンテスト | |
| ユーザー |  | 
| 提出日時 | 2023-03-17 23:29:17 | 
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 46 ms / 3,000 ms | 
| コード長 | 4,690 bytes | 
| コンパイル時間 | 1,775 ms | 
| コンパイル使用メモリ | 171,768 KB | 
| 実行使用メモリ | 6,948 KB | 
| 最終ジャッジ日時 | 2024-09-18 12:32:05 | 
| 合計ジャッジ時間 | 3,067 ms | 
| ジャッジサーバーID (参考情報) | judge4 / judge3 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 35 | 
ソースコード
#include <bits/stdc++.h>
#define all(v) v.begin(), v.end()
#define rall(v) v.rbegin(), v.rend()
#define rep(i,n) for(int i=0;i<(int)(n);i++)
#define codefor int test;cin>>test;while(test--)
#define INT(...) int __VA_ARGS__;in(__VA_ARGS__)
#define LL(...) ll __VA_ARGS__;in(__VA_ARGS__)
#define vector2d(type,name,h,...) vector<vector<type>>name(h,vector<type>(__VA_ARGS__))
#define vector3d(type,name,h,w,...) vector<vector<vector<type>>>name(h,vector<vector<type>>(w,vector<type>(__VA_ARGS__)))
using namespace std;
using ll = long long;
template<class T> using rpriority_queue = priority_queue<T, vector<T>, greater<T>>;
template<class T> istream& operator>>(istream& is, vector<T>& vec) {for(T& x : vec)is >> x;return is;}
template<class T> ostream& operator<<(ostream& os, const vector<T>& vec) {if(vec.empty())return os;os << vec[0];for(auto it = vec.begin(); ++it!= vec.end();)os << ' ' << *it;return os;}
void in(){}
template <class Head, class... Tail> void in(Head& head, Tail&... tail){cin >> head;in(tail...);}
void out(){cout << '\n';}
template<class T>void out(const T& a){cout << a << '\n';}
template <class Head, class... Tail> void out(const Head& head,const Tail&... tail){cout << head << ' ';out(tail...);}
const int INF = 1 << 30;
const long long INF2 = 1ll << 60;
template<class T> void chmax(T &a,const T b){if(b>a)a=b;}
template<class T> void chmin(T &a,const T b){if(b<a)a=b;}
template<const unsigned int MOD> struct prime_modint {
    using mint = prime_modint;
    unsigned int v;
    prime_modint() : v(0) {}
    prime_modint(unsigned int a) { a %= MOD; v = a; }
    prime_modint(unsigned long long a) { a %= MOD; v = a; }
    prime_modint(int a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
    prime_modint(long long a) { a %= (int)(MOD); if(a < 0)a += MOD; v = a; }
    static constexpr int mod() { return MOD; }
    mint& operator++() {v++; if(v == MOD)v = 0; return *this;}
    mint& operator--() {if(v == 0)v = MOD; v--; return *this;}
    mint operator++(int) { mint result = *this; ++*this; return result; }
    mint operator--(int) { mint result = *this; --*this; return result; }
    mint& operator+=(const mint& rhs) { v += rhs.v; if(v >= MOD) v -= MOD; return *this; }
    mint& operator-=(const mint& rhs) { if(v < rhs.v) v += MOD; v -= rhs.v; return *this; }
    mint& operator*=(const mint& rhs) {
        v = (unsigned int)((unsigned long long)(v) * rhs.v % MOD);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint r = 1, x = *this;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const { assert(v); return pow(MOD - 2); }
    friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; }
    friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; }
    friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; }
    friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; }
    friend bool operator==(const mint& lhs, const mint& rhs) { return (lhs.v == rhs.v); }
    friend bool operator!=(const mint& lhs, const mint& rhs) { return (lhs.v != rhs.v); }
    friend std::ostream& operator << (std::ostream &os, const mint& rhs) noexcept { return os << rhs.v; }
};
//using mint = prime_modint<1000000007>;
using mint = prime_modint<998244353>;
template <class T> struct fenwick_tree {
    using U = T;
    public:
    fenwick_tree() : _n(0) {}
    fenwick_tree(int n) : _n(n), data(n) {}
    void add(int p, T x) {
        assert(0 <= p && p < _n);
        p++;
        while (p <= _n) {
            data[p - 1] += U(x);
            p += p & -p;
        }
    }
    T sum(int l, int r) {
        assert(0 <= l && l <= r && r <= _n);
        return sum(r) - sum(l);
    }
    private:
    int _n;
    std::vector<U> data;
    U sum(int r) {
        U s = 0;
        while (r > 0) {
            s += data[r - 1];
            r -= r & -r;
        }
        return s;
    }
};
int main(){
    ios::sync_with_stdio(false);
    cin.tie(0);
    INT(n);
    vector<int> p(n);
    in(p);
    fenwick_tree<mint> fw(n + 1), fw2(n + 1);
    mint coef = 1, coef2 = mint(2).pow(n - 1), ans;
    for(int i = 0; i < n; i++){
        p[i]--;
        ans += (coef * fw.sum(p[i], n) - fw2.sum(p[i], n)) * coef2;
        fw.add(p[i], 1);
        fw2.add(p[i], coef);
        coef *= 2;
        coef2 *= 998244354 / 2;
    }
    out(ans);
}
            
            
            
        