結果

問題 No.1627 三角形の成立
ユーザー vwxyzvwxyz
提出日時 2023-03-20 03:15:06
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 149 ms / 1,000 ms
コード長 2,761 bytes
コンパイル時間 297 ms
コンパイル使用メモリ 82,432 KB
実行使用メモリ 85,096 KB
最終ジャッジ日時 2024-09-18 13:59:08
合計ジャッジ時間 3,563 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 41 ms
52,864 KB
testcase_01 AC 41 ms
53,120 KB
testcase_02 AC 41 ms
52,608 KB
testcase_03 AC 42 ms
52,352 KB
testcase_04 AC 41 ms
52,608 KB
testcase_05 AC 149 ms
85,096 KB
testcase_06 AC 116 ms
80,512 KB
testcase_07 AC 96 ms
78,848 KB
testcase_08 AC 133 ms
82,980 KB
testcase_09 AC 84 ms
77,312 KB
testcase_10 AC 144 ms
83,984 KB
testcase_11 AC 111 ms
80,572 KB
testcase_12 AC 131 ms
83,764 KB
testcase_13 AC 82 ms
77,440 KB
testcase_14 AC 137 ms
83,272 KB
testcase_15 AC 117 ms
81,612 KB
testcase_16 AC 73 ms
73,344 KB
testcase_17 AC 133 ms
83,604 KB
testcase_18 AC 126 ms
82,220 KB
testcase_19 AC 40 ms
52,736 KB
testcase_20 AC 39 ms
52,992 KB
testcase_21 AC 41 ms
52,864 KB
testcase_22 AC 40 ms
53,120 KB
testcase_23 AC 41 ms
52,352 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline

class Prime:
    def __init__(self,N):
        assert N<=10**8
        self.smallest_prime_factor=[None]*(N+1)
        for i in range(2,N+1,2):
            self.smallest_prime_factor[i]=2
        n=int(N**.5)+1
        for p in range(3,n,2):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
                for i in range(p**2,N+1,2*p):
                    if self.smallest_prime_factor[i]==None:
                        self.smallest_prime_factor[i]=p
        for p in range(n,N+1):
            if self.smallest_prime_factor[p]==None:
                self.smallest_prime_factor[p]=p
        self.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]

    def Factorize(self,N):
        assert N>=1
        factors=defaultdict(int)
        if N<=len(self.smallest_prime_factor)-1:
            while N!=1:
                factors[self.smallest_prime_factor[N]]+=1
                N//=self.smallest_prime_factor[N]
        else:
            for p in self.primes:
                while N%p==0:
                    N//=p
                    factors[p]+=1
                if N<p*p:
                    if N!=1:
                        factors[N]+=1
                    break
                if N<=len(self.smallest_prime_factor)-1:
                    while N!=1:
                        factors[self.smallest_prime_factor[N]]+=1
                        N//=self.smallest_prime_factor[N]
                    break
            else:
                if N!=1:
                    factors[N]+=1
        return factors

    def Divisors(self,N):
        assert N>0
        divisors=[1]
        for p,e in self.Factorize(N).items():
            pow_p=[1]
            for _ in range(e):
                pow_p.append(pow_p[-1]*p)
            divisors=[i*j for i in divisors for j in pow_p]
        return divisors

    def Is_Prime(self,N):
        return N==self.smallest_prime_factor[N]

    def Totient(self,N):
        for p in self.Factorize(N).keys():
            N*=p-1
            N//=p
        return N

    def Mebius(self,N):
        fact=self.Factorize(N)
        for e in fact.values():
            if e>=2:
                return 0
        else:
            if len(fact)%2==0:
                return 1
            else:
                return -1

N,M=map(int,readline().split())
mod=10**9+7
ans=N*M*(N*M-1)*(N*M-2)//6
X=max(N,M)
P=Prime(X)
cnt=[0]*X
for g in range(1,X):
    cntN,cntM=0,0
    for n in range(g,N,g):
        cntN+=N-n
    for m in range(g,M,g):
        cntM+=M-m
    cnt[g]=cntN*cntM*2+N*cntM+M*cntN
for p in P.primes:
    for x in range(1,(X-1)//p+1):
        cnt[x]-=cnt[x*p]
for g in range(1,X):
    ans-=cnt[g]*(g-1)
ans%=mod
print(ans)
0