結果
| 問題 |
No.1868 Teleporting Cyanmond
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-03-23 19:56:42 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 186 ms / 2,000 ms |
| コード長 | 4,557 bytes |
| コンパイル時間 | 11,812 ms |
| コンパイル使用メモリ | 231,856 KB |
| 実行使用メモリ | 145,592 KB |
| 最終ジャッジ日時 | 2024-09-18 15:34:57 |
| 合計ジャッジ時間 | 13,215 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 25 |
ソースコード
package main
import (
"bufio"
"fmt"
"os"
)
const INF int = 1e18
func main() {
// https://yukicoder.me/problems/no/1868
// !给定一张有向图,每个点i可以向右达到i+1,i+2,...,targets[i]。求从0到n-1的最短路。
// 解法1:每个点i连接targets[i],边权为1,所有i到i-1连边,边权为0。然后跑最短路。
// 解法2:RangeToRangeGraph。每个点i连接i+1,i+2,...,targets[i]。然后跑最短路。
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n int
fmt.Fscan(in, &n)
targets := make([]int, n-1) // !从i可以到 i+1, i+2, ..., targets[i]
for i := range targets {
fmt.Fscan(in, &targets[i])
targets[i]-- // [0,n-1]内
}
R := NewRangeToRangeGraph(n)
for i := 0; i < n-1; i++ {
R.AddToRange(i, i+1, targets[i]+1, 1) // 左闭右开
}
adjList, newN := R.Build()
dist, queue := make([]int, newN), NewDeque(newN)
for i := range dist {
dist[i] = INF
}
dist[0] = 0
queue.Append(0)
for queue.Size() > 0 {
cur := queue.PopLeft()
for _, e := range adjList[cur] {
next, weight := e[0], e[1]
cand := dist[cur] + weight
if cand < dist[next] {
dist[next] = cand
if weight == 0 {
queue.AppendLeft(next)
} else {
queue.Append(next)
}
}
}
}
fmt.Fprintln(out, dist[n-1])
}
type RangeToRangeGraph struct {
n int
nNode int
edges [][3]int // [from, to, weight]
}
func NewRangeToRangeGraph(n int) *RangeToRangeGraph {
g := &RangeToRangeGraph{
n: n,
nNode: n * 3,
}
for i := 2; i < n+n; i++ {
g.edges = append(g.edges, [3]int{g.toUpperIdx(i / 2), g.toUpperIdx(i), 0})
}
for i := 2; i < n+n; i++ {
g.edges = append(g.edges, [3]int{g.toLowerIdx(i), g.toLowerIdx(i / 2), 0})
}
return g
}
// 添加有向边 from -> to, 权重为 weight.
func (g *RangeToRangeGraph) Add(from, to int, weight int) {
g.edges = append(g.edges, [3]int{from, to, weight})
}
// 从区间 [fromStart, fromEnd) 中的每个点到 to 都添加一条有向边,权重为 weight.
func (g *RangeToRangeGraph) AddFromRange(fromStart, fromEnd, to int, weight int) {
l, r := fromStart+g.n, fromEnd+g.n
for l < r {
if l&1 == 1 {
g.Add(g.toLowerIdx(l), to, weight)
l++
}
if r&1 == 1 {
r--
g.Add(g.toLowerIdx(r), to, weight)
}
l >>= 1
r >>= 1
}
}
// 从 from 到区间 [toStart, toEnd) 中的每个点都添加一条有向边,权重为 weight.
func (g *RangeToRangeGraph) AddToRange(from, toStart, toEnd int, weight int) {
l, r := toStart+g.n, toEnd+g.n
for l < r {
if l&1 == 1 {
g.Add(from, g.toUpperIdx(l), weight)
l++
}
if r&1 == 1 {
r--
g.Add(from, g.toUpperIdx(r), weight)
}
l >>= 1
r >>= 1
}
}
// 从区间 [fromStart, fromEnd) 中的每个点到区间 [toStart, toEnd) 中的每个点都添加一条有向边,权重为 weight.
func (g *RangeToRangeGraph) AddRangeToRange(fromStart, fromEnd, toStart, toEnd int, weight int) {
newNode := g.nNode
g.nNode++
g.AddFromRange(fromStart, fromEnd, newNode, weight)
g.AddToRange(newNode, toStart, toEnd, 0)
}
// 返回`新图的有向邻接表和新图的节点数`.
func (g *RangeToRangeGraph) Build() (graph [][][2]int, vertex int) {
graph = make([][][2]int, g.nNode)
for _, e := range g.edges {
u, v, w := e[0], e[1], e[2]
graph[u] = append(graph[u], [2]int{v, w})
}
return graph, g.nNode
}
func (g *RangeToRangeGraph) toUpperIdx(i int) int {
if i >= g.n {
return i - g.n
}
return g.n + i
}
func (g *RangeToRangeGraph) toLowerIdx(i int) int {
if i >= g.n {
return i - g.n
}
return g.n + g.n + i
}
//
//
type D = int
type Deque struct{ l, r []D }
func NewDeque(cap int) *Deque { return &Deque{make([]D, 0, 1+cap/2), make([]D, 0, 1+cap/2)} }
func (q Deque) Empty() bool {
return len(q.l) == 0 && len(q.r) == 0
}
func (q Deque) Size() int {
return len(q.l) + len(q.r)
}
func (q *Deque) AppendLeft(v D) {
q.l = append(q.l, v)
}
func (q *Deque) Append(v D) {
q.r = append(q.r, v)
}
func (q *Deque) PopLeft() (v D) {
if len(q.l) > 0 {
q.l, v = q.l[:len(q.l)-1], q.l[len(q.l)-1]
} else {
v, q.r = q.r[0], q.r[1:]
}
return
}
func (q *Deque) Pop() (v D) {
if len(q.r) > 0 {
q.r, v = q.r[:len(q.r)-1], q.r[len(q.r)-1]
} else {
v, q.l = q.l[0], q.l[1:]
}
return
}
func (q Deque) Front() D {
if len(q.l) > 0 {
return q.l[len(q.l)-1]
}
return q.r[0]
}
func (q Deque) Back() D {
if len(q.r) > 0 {
return q.r[len(q.r)-1]
}
return q.l[0]
}
// 0 <= i < q.Size()
func (q Deque) At(i int) D {
if i < len(q.l) {
return q.l[len(q.l)-1-i]
}
return q.r[i-len(q.l)]
}