結果
問題 | No.899 γatheree |
ユーザー | 草苺奶昔 |
提出日時 | 2023-03-31 17:28:35 |
言語 | Go (1.23.4) |
結果 |
AC
|
実行時間 | 736 ms / 2,000 ms |
コード長 | 9,258 bytes |
コンパイル時間 | 12,876 ms |
コンパイル使用メモリ | 221,204 KB |
実行使用メモリ | 30,772 KB |
最終ジャッジ日時 | 2024-09-22 21:16:45 |
合計ジャッジ時間 | 28,109 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 1 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,944 KB |
testcase_03 | AC | 1 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 694 ms
26,588 KB |
testcase_07 | AC | 695 ms
28,576 KB |
testcase_08 | AC | 705 ms
28,744 KB |
testcase_09 | AC | 697 ms
26,744 KB |
testcase_10 | AC | 689 ms
26,564 KB |
testcase_11 | AC | 715 ms
28,636 KB |
testcase_12 | AC | 729 ms
28,788 KB |
testcase_13 | AC | 698 ms
26,744 KB |
testcase_14 | AC | 736 ms
26,556 KB |
testcase_15 | AC | 725 ms
28,804 KB |
testcase_16 | AC | 721 ms
28,792 KB |
testcase_17 | AC | 725 ms
26,676 KB |
testcase_18 | AC | 723 ms
28,796 KB |
testcase_19 | AC | 690 ms
28,700 KB |
testcase_20 | AC | 692 ms
26,720 KB |
testcase_21 | AC | 622 ms
26,716 KB |
testcase_22 | AC | 638 ms
30,772 KB |
testcase_23 | AC | 636 ms
28,728 KB |
ソースコード
package main import ( "bufio" "fmt" "math/bits" "os" ) func main() { in := bufio.NewReader(os.Stdin) out := bufio.NewWriter(os.Stdout) defer out.Flush() var n int fmt.Fscan(in, &n) adjList := make([][]Edge, n) for i := 0; i < n-1; i++ { var u, v int fmt.Fscan(in, &u, &v) adjList[u] = append(adjList[u], Edge{v, 1}) adjList[v] = append(adjList[v], Edge{u, 1}) } B := NewBFSNumbering(adjList, 0) nums := make([]int, n) for i := 0; i < n; i++ { fmt.Fscan(in, &nums[i]) } leaves := make([]E, n) for i := 0; i < n; i++ { id := B.Id[i] leaves[id] = E{size: 1, sum: nums[i]} } seg := NewLazySegTree(leaves) var q int fmt.Fscan(in, &q) for i := 0; i < q; i++ { var root int fmt.Fscan(in, &root) p := B.Parent[root] pp := -1 if p != -1 { pp = B.Parent[p] } res := 0 // 移动非子树部分 if pp >= 0 { res += seg.Get(B.Id[pp]).sum seg.Set(B.Id[pp], E{size: 1, sum: 0}) } if p >= 0 { res += seg.Get(B.Id[p]).sum seg.Set(B.Id[p], E{size: 1, sum: 0}) left, right := B.FindRange(p, B.Depth[p]+1) // !兄弟结点 res += seg.Query(left, right).sum seg.Update(left, right, Id{mul: 0, add: 0}) } // 移动子树部分 for d := 0; d < 3; d++ { left, right := B.FindRange(root, B.Depth[root]+d) res += seg.Query(left, right).sum seg.Update(left, right, Id{mul: 0, add: 0}) } fmt.Fprintln(out, res) seg.Set(B.Id[root], E{size: 1, sum: res}) } } const INF = 1e18 // RangeAffineRangeSum (这里用来将区间全部置为0) type E = struct{ size, sum int } type Id = struct{ mul, add int } func (*LazySegTree) e() E { return E{size: 1} } func (*LazySegTree) id() Id { return Id{mul: 1} } func (*LazySegTree) op(left, right E) E { return E{ size: left.size + right.size, sum: (left.sum + right.sum), } } func (*LazySegTree) mapping(lazy Id, data E) E { return E{ size: data.size, sum: (data.sum*lazy.mul + data.size*lazy.add), } } func (*LazySegTree) composition(parentLazy, childLazy Id) Id { return Id{ mul: (parentLazy.mul * childLazy.mul), add: (parentLazy.mul*childLazy.add + parentLazy.add), } } // !template type LazySegTree struct { n int size int log int data []E lazy []Id } func NewLazySegTree(leaves []E) *LazySegTree { tree := &LazySegTree{} n := len(leaves) tree.n = n tree.log = int(bits.Len(uint(n - 1))) tree.size = 1 << tree.log tree.data = make([]E, tree.size<<1) tree.lazy = make([]Id, tree.size) for i := range tree.data { tree.data[i] = tree.e() } for i := range tree.lazy { tree.lazy[i] = tree.id() } for i := 0; i < n; i++ { tree.data[tree.size+i] = leaves[i] } for i := tree.size - 1; i >= 1; i-- { tree.pushUp(i) } return tree } // 查询切片[left:right]的值 // 0<=left<=right<=len(tree.data) func (tree *LazySegTree) Query(left, right int) E { if left < 0 { left = 0 } if right > tree.n { right = tree.n } if left >= right { return tree.e() } left += tree.size right += tree.size for i := tree.log; i >= 1; i-- { if ((left >> i) << i) != left { tree.pushDown(left >> i) } if ((right >> i) << i) != right { tree.pushDown((right - 1) >> i) } } sml, smr := tree.e(), tree.e() for left < right { if left&1 != 0 { sml = tree.op(sml, tree.data[left]) left++ } if right&1 != 0 { right-- smr = tree.op(tree.data[right], smr) } left >>= 1 right >>= 1 } return tree.op(sml, smr) } func (tree *LazySegTree) QueryAll() E { return tree.data[1] } // 更新切片[left:right]的值 // 0<=left<=right<=len(tree.data) func (tree *LazySegTree) Update(left, right int, f Id) { if left < 0 { left = 0 } if right > tree.n { right = tree.n } if left >= right { return } left += tree.size right += tree.size for i := tree.log; i >= 1; i-- { if ((left >> i) << i) != left { tree.pushDown(left >> i) } if ((right >> i) << i) != right { tree.pushDown((right - 1) >> i) } } l2, r2 := left, right for left < right { if left&1 != 0 { tree.propagate(left, f) left++ } if right&1 != 0 { right-- tree.propagate(right, f) } left >>= 1 right >>= 1 } left = l2 right = r2 for i := 1; i <= tree.log; i++ { if ((left >> i) << i) != left { tree.pushUp(left >> i) } if ((right >> i) << i) != right { tree.pushUp((right - 1) >> i) } } } // 二分查询最小的 left 使得切片 [left:right] 内的值满足 predicate func (tree *LazySegTree) MinLeft(right int, predicate func(data E) bool) int { if right == 0 { return 0 } right += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown((right - 1) >> i) } res := tree.e() for { right-- for right > 1 && right&1 != 0 { right >>= 1 } if !predicate(tree.op(tree.data[right], res)) { for right < tree.size { tree.pushDown(right) right = right<<1 | 1 if predicate(tree.op(tree.data[right], res)) { res = tree.op(tree.data[right], res) right-- } } return right + 1 - tree.size } res = tree.op(tree.data[right], res) if (right & -right) == right { break } } return 0 } // 二分查询最大的 right 使得切片 [left:right] 内的值满足 predicate func (tree *LazySegTree) MaxRight(left int, predicate func(data E) bool) int { if left == tree.n { return tree.n } left += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(left >> i) } res := tree.e() for { for left&1 == 0 { left >>= 1 } if !predicate(tree.op(res, tree.data[left])) { for left < tree.size { tree.pushDown(left) left <<= 1 if predicate(tree.op(res, tree.data[left])) { res = tree.op(res, tree.data[left]) left++ } } return left - tree.size } res = tree.op(res, tree.data[left]) left++ if (left & -left) == left { break } } return tree.n } // 单点查询(不需要 pushUp/op 操作时使用) func (tree *LazySegTree) Get(index int) E { index += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(index >> i) } return tree.data[index] } // 单点赋值 func (tree *LazySegTree) Set(index int, e E) { index += tree.size for i := tree.log; i >= 1; i-- { tree.pushDown(index >> i) } tree.data[index] = e for i := 1; i <= tree.log; i++ { tree.pushUp(index >> i) } } func (tree *LazySegTree) pushUp(root int) { tree.data[root] = tree.op(tree.data[root<<1], tree.data[root<<1|1]) } func (tree *LazySegTree) pushDown(root int) { if tree.lazy[root] != tree.id() { tree.propagate(root<<1, tree.lazy[root]) tree.propagate(root<<1|1, tree.lazy[root]) tree.lazy[root] = tree.id() } } func (tree *LazySegTree) propagate(root int, f Id) { tree.data[root] = tree.mapping(f, tree.data[root]) // !叶子结点不需要更新lazy if root < tree.size { tree.lazy[root] = tree.composition(f, tree.lazy[root]) } } type Edge struct{ to, weight int } type BFSNumbering struct { Depth []int // 每个点的绝对深度(0-based) Id []int // 每个点的欧拉序起点编号(0-based) Parent []int // 不存在时为-1 count int root int vs []int lid, rid, depId []int lidSeq []int graph [][]Edge } func NewBFSNumbering(graph [][]Edge, root int) *BFSNumbering { res := &BFSNumbering{graph: graph, root: root} res.build() return res } // 查询root的子树中,深度为dep的顶点的欧拉序/括号序的左闭右开区间[left, right). // 0 <= left < right <= n. // dep 是绝对深度. func (b *BFSNumbering) FindRange(root, dep int) (left, right int) { if dep < b.Depth[root] || dep >= len(b.depId)-1 { return 0, 0 } left1, right1 := b.lid[root], b.rid[root] left2, right2 := b.depId[dep], b.depId[dep+1] left = b.bs(left2-1, right2, left1) right = b.bs(left2-1, right2, right1) return } func (b *BFSNumbering) build() { n := len(b.graph) b.vs = make([]int, 0, n) b.Parent = make([]int, n) for i := range b.Parent { b.Parent[i] = -1 } b.Id = make([]int, n) b.lid = make([]int, n) b.rid = make([]int, n) b.Depth = make([]int, n) b.bfs() b.dfs(b.root) d := maxs(b.Depth...) b.depId = make([]int, d+2) for i := 0; i < n; i++ { b.depId[b.Depth[i]+1]++ } for i := 0; i < d+1; i++ { b.depId[i+1] += b.depId[i] } b.lidSeq = make([]int, 0, n) for i := 0; i < n; i++ { b.lidSeq = append(b.lidSeq, b.lid[b.vs[i]]) } } func (b *BFSNumbering) bfs() { queue := []int{b.root} for len(queue) > 0 { v := queue[0] queue = queue[1:] b.Id[v] = len(b.vs) b.vs = append(b.vs, v) for _, e := range b.graph[v] { if e.to == b.Parent[v] { continue } queue = append(queue, e.to) b.Parent[e.to] = v b.Depth[e.to] = b.Depth[v] + 1 } } } func (b *BFSNumbering) dfs(v int) { b.lid[v] = b.count b.count++ for _, e := range b.graph[v] { if e.to == b.Parent[v] { continue } b.dfs(e.to) } b.rid[v] = b.count } func (b *BFSNumbering) bs(left, right, x int) int { for left+1 < right { mid := (left + right) / 2 if b.lidSeq[mid] >= x { right = mid } else { left = mid } } return right } func min(a, b int) int { if a < b { return a } return b } func max(a, b int) int { if a > b { return a } return b } func maxs(nums ...int) int { res := nums[0] for _, num := range nums { if num > res { res = num } } return res }