結果
| 問題 |
No.2265 Xor Range Substring Sum Query
|
| コンテスト | |
| ユーザー |
emthrm
|
| 提出日時 | 2023-04-07 23:09:52 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 7,426 bytes |
| コンパイル時間 | 3,037 ms |
| コンパイル使用メモリ | 256,760 KB |
| 実行使用メモリ | 72,476 KB |
| 最終ジャッジ日時 | 2024-10-02 20:25:34 |
| 合計ジャッジ時間 | 9,986 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 2 TLE * 1 -- * 19 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
constexpr int MOD = 998244353;
// constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
IOSetup() {
std::cin.tie(nullptr);
std::ios_base::sync_with_stdio(false);
std::cout << fixed << setprecision(20);
}
} iosetup;
template <int M>
struct MInt {
unsigned int v;
MInt() : v(0) {}
MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
static constexpr int get_mod() { return M; }
static void set_mod(const int divisor) { assert(divisor == M); }
static void init(const int x) {
inv<true>(x);
fact(x);
fact_inv(x);
}
template <bool MEMOIZES = false>
static MInt inv(const int n) {
// assert(0 <= n && n < M && std::gcd(n, M) == 1);
static std::vector<MInt> inverse{0, 1};
const int prev = inverse.size();
if (n < prev) return inverse[n];
if constexpr (MEMOIZES) {
// "n!" and "M" must be disjoint.
inverse.resize(n + 1);
for (int i = prev; i <= n; ++i) {
inverse[i] = -inverse[M % i] * (M / i);
}
return inverse[n];
}
int u = 1, v = 0;
for (unsigned int a = n, b = M; b;) {
const unsigned int q = a / b;
std::swap(a -= q * b, b);
std::swap(u -= q * v, v);
}
return u;
}
static MInt fact(const int n) {
static std::vector<MInt> factorial{1};
const int prev = factorial.size();
if (n >= prev) {
factorial.resize(n + 1);
for (int i = prev; i <= n; ++i) {
factorial[i] = factorial[i - 1] * i;
}
}
return factorial[n];
}
static MInt fact_inv(const int n) {
static std::vector<MInt> f_inv{1};
const int prev = f_inv.size();
if (n >= prev) {
f_inv.resize(n + 1);
f_inv[n] = inv(fact(n).v);
for (int i = n; i > prev; --i) {
f_inv[i - 1] = f_inv[i] * i;
}
}
return f_inv[n];
}
static MInt nCk(const int n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
fact_inv(n - k) * fact_inv(k));
}
static MInt nPk(const int n, const int k) {
return n < 0 || n < k || k < 0 ? 0 : fact(n) * fact_inv(n - k);
}
static MInt nHk(const int n, const int k) {
return n < 0 || k < 0 ? 0 : (k == 0 ? 1 : nCk(n + k - 1, k));
}
static MInt large_nCk(long long n, const int k) {
if (n < 0 || n < k || k < 0) return 0;
inv<true>(k);
MInt res = 1;
for (int i = 1; i <= k; ++i) {
res *= inv(i) * n--;
}
return res;
}
MInt pow(long long exponent) const {
MInt res = 1, tmp = *this;
for (; exponent > 0; exponent >>= 1) {
if (exponent & 1) res *= tmp;
tmp *= tmp;
}
return res;
}
MInt& operator+=(const MInt& x) {
if (std::cmp_greater_equal(v += x.v, M)) v -= M;
return *this;
}
MInt& operator-=(const MInt& x) {
if (std::cmp_greater_equal(v += M - x.v, M)) v -= M;
return *this;
}
MInt& operator*=(const MInt& x) {
v = static_cast<unsigned long long>(v) * x.v % M;
return *this;
}
MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }
auto operator<=>(const MInt& x) const = default;
MInt& operator++() {
if (std::cmp_equal(++v, M)) v = 0;
return *this;
}
MInt operator++(int) {
const MInt res = *this;
++*this;
return res;
}
MInt& operator--() {
v = (v == 0 ? M - 1 : v - 1);
return *this;
}
MInt operator--(int) {
const MInt res = *this;
--*this;
return res;
}
MInt operator+() const { return *this; }
MInt operator-() const { return MInt(v ? M - v : 0); }
MInt operator+(const MInt& x) const { return MInt(*this) += x; }
MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
MInt operator/(const MInt& x) const { return MInt(*this) /= x; }
friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
return os << x.v;
}
friend std::istream& operator>>(std::istream& is, MInt& x) {
long long v;
is >> v;
x = MInt(v);
return is;
}
};
using ModInt = MInt<MOD>;
// https://yukicoder.me/submissions/751758
template <typename T>
struct xor_segment_tree{
int N;
vector<vector<T>> ST;
function<T(T, T)> f;
T E;
xor_segment_tree(vector<T> &A, function<T(T, T)> f, T E): f(f), E(E){
N = A.size();
ST = vector<vector<T>>(N * 2 - 1);
for (int i = 0; i < N; i++){
ST[N - 1 + i].push_back(A[i]);
}
for (int i = N - 2; i >= 0; i--){
int cnt = ST[i * 2 + 1].size();
for (int j = 0; j < cnt; j++){
ST[i].push_back(f(ST[i * 2 + 1][j], ST[i * 2 + 2][j]));
}
for (int j = 0; j < cnt; j++){
ST[i].push_back(f(ST[i * 2 + 2][j], ST[i * 2 + 1][j]));
}
}
}
T range_fold(int L, int R, int x, int i, int l, int r){
if (r <= L || R <= l){
return E;
} else if (L <= l && r <= R){
return ST[i][x];
} else {
int p = (r - l) / 2;
int m = (l + r) / 2;
if ((x & p) == 0){
T resL = range_fold(L, R, x, i * 2 + 1, l, m);
T resR = range_fold(L, R, x, i * 2 + 2, m, r);
return f(resL, resR);
} else {
T resL = E;
if (R >= m){
resL = range_fold(max(L, m) - p, R - p, x ^ p, i * 2 + 1, l, m);
}
T resR = E;
if (L < m){
resR = range_fold(L + p, min(R, m) + p, x ^ p, i * 2 + 2, m, r);
}
return f(resR, resL);
}
}
}
T range_fold(int L, int R, int x){
return range_fold(L, R, x, 0, 0, N);
}
void update(const int i, const T& x) {
ST[N - 1 + i] = {x};
if (N - 1 + i == 0) return;
for (int p = (N - 1 + i - 1) / 2; ; p = (p - 1) / 2){
ST[p].clear();
int cnt = ST[p * 2 + 1].size();
for (int j = 0; j < cnt; j++){
ST[p].push_back(f(ST[p * 2 + 1][j], ST[p * 2 + 2][j]));
}
for (int j = 0; j < cnt; j++){
ST[p].push_back(f(ST[p * 2 + 2][j], ST[p * 2 + 1][j]));
}
if (p == 0) break;
}
}
};
struct linear{
ModInt a;
int b;
linear(){
a = 0;
b = 0;
}
linear(const ModInt& a, const int b): a(a), b(b){
}
};
linear composite(const linear& A, const linear& B){
return linear(A.a * ModInt(11).pow(B.b) + B.a * ModInt(2).pow(A.b), A.b + B.b);
}
int main() {
int n; cin >> n;
vector<linear> f(1 << n);
REP(i, 1 << n) {
char s; cin >> s;
f[i] = linear(s - '0', 1);
}
xor_segment_tree<linear> F(f, composite, linear());
int q; cin >> q;
while (q--) {
int type; cin >> type;
if (type == 1) {
int x, y; cin >> x >> y;
F.update(x, linear(y, 1));
} else if (type == 2) {
int l, r, x; cin >> l >> r >> x;
cout << F.range_fold(l, r + 1, x).a << '\n';
}
}
return 0;
}
emthrm