結果
| 問題 |
No.2265 Xor Range Substring Sum Query
|
| コンテスト | |
| ユーザー |
akakimidori
|
| 提出日時 | 2023-04-07 23:19:27 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1,214 ms / 5,000 ms |
| コード長 | 12,379 bytes |
| コンパイル時間 | 13,129 ms |
| コンパイル使用メモリ | 379,600 KB |
| 実行使用メモリ | 38,528 KB |
| 最終ジャッジ日時 | 2024-10-02 20:31:09 |
| 合計ジャッジ時間 | 30,119 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 22 |
コンパイルメッセージ
warning: unused variable: `n` --> src/main.rs:43:9 | 43 | let n: usize = sc.next(); | ^ help: if this is intentional, prefix it with an underscore: `_n` | = note: `#[warn(unused_variables)]` on by default
ソースコード
// ---------- begin scannner ----------
#[allow(dead_code)]
mod scanner {
use std::str::FromStr;
pub struct Scanner<'a> {
it: std::str::SplitWhitespace<'a>,
}
impl<'a> Scanner<'a> {
pub fn new(s: &'a String) -> Scanner<'a> {
Scanner {
it: s.split_whitespace(),
}
}
pub fn next<T: FromStr>(&mut self) -> T {
self.it.next().unwrap().parse::<T>().ok().unwrap()
}
pub fn next_bytes(&mut self) -> Vec<u8> {
self.it.next().unwrap().bytes().collect()
}
pub fn next_chars(&mut self) -> Vec<char> {
self.it.next().unwrap().chars().collect()
}
pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> {
(0..len).map(|_| self.next()).collect()
}
}
}
// ---------- end scannner ----------
use std::io::Write;
fn main() {
use std::io::Read;
let mut s = String::new();
std::io::stdin().read_to_string(&mut s).unwrap();
let mut sc = scanner::Scanner::new(&s);
let out = std::io::stdout();
let mut out = std::io::BufWriter::new(out.lock());
run(&mut sc, &mut out);
}
fn run<W: Write>(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) {
let n: usize = sc.next();
let s = sc.next_bytes();
let mut a = s.iter().map(|s| Value::new((*s - b'0') as u32)).collect::<Vec<_>>();
let mut seg = XorSegmentTree::new(&a);
let q: usize = sc.next();
for _ in 0..q {
let op: u8 = sc.next();
if op == 1 {
let x: usize = sc.next();
let y: u32 = sc.next();
seg.update(x, Value::new(y));
a[x] = Value::new(y);
} else {
let l: usize = sc.next();
let r = sc.next::<usize>() + 1;
let x: usize = sc.next();
let ans = seg.find(l, r, x).0;
writeln!(out, "{}", ans).ok();
/*
let mut value = Value::e();
for i in l..r {
let i = i ^ x;
value = value.merge(&a[i]);
}
println!("{:?}", value);
*/
}
}
}
#[derive(Clone, Debug)]
struct Value(M, M, M);
impl Value {
fn new(a: u32) -> Self {
Value(M::new(a), M::new(2), M::new(11))
}
}
impl Monoid for Value {
fn merge(&self, rhs: &Self) -> Self {
let s = self.0 * rhs.2 + rhs.0 * self.1;
let two = self.1 * rhs.1;
let e = self.2 * rhs.2;
Self(s, two, e)
}
fn e() -> Self {
Value(M::zero(), M::one(), M::one())
}
}
// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;
pub trait Modulo {
fn modulo() -> u32;
}
pub struct ConstantModulo<const M: u32>;
impl<const M: u32> Modulo for ConstantModulo<{ M }> {
fn modulo() -> u32 {
M
}
}
pub struct ModInt<T>(u32, PhantomData<T>);
impl<T> Clone for ModInt<T> {
fn clone(&self) -> Self {
Self::new_unchecked(self.0)
}
}
impl<T> Copy for ModInt<T> {}
impl<T: Modulo> Add for ModInt<T> {
type Output = ModInt<T>;
fn add(self, rhs: Self) -> Self::Output {
let mut v = self.0 + rhs.0;
if v >= T::modulo() {
v -= T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> AddAssign for ModInt<T> {
fn add_assign(&mut self, rhs: Self) {
*self = *self + rhs;
}
}
impl<T: Modulo> Sub for ModInt<T> {
type Output = ModInt<T>;
fn sub(self, rhs: Self) -> Self::Output {
let mut v = self.0 - rhs.0;
if self.0 < rhs.0 {
v += T::modulo();
}
Self::new_unchecked(v)
}
}
impl<T: Modulo> SubAssign for ModInt<T> {
fn sub_assign(&mut self, rhs: Self) {
*self = *self - rhs;
}
}
impl<T: Modulo> Mul for ModInt<T> {
type Output = ModInt<T>;
fn mul(self, rhs: Self) -> Self::Output {
let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
Self::new_unchecked(v as u32)
}
}
impl<T: Modulo> MulAssign for ModInt<T> {
fn mul_assign(&mut self, rhs: Self) {
*self = *self * rhs;
}
}
impl<T: Modulo> Neg for ModInt<T> {
type Output = ModInt<T>;
fn neg(self) -> Self::Output {
if self.is_zero() {
Self::zero()
} else {
Self::new_unchecked(T::modulo() - self.0)
}
}
}
impl<T> std::fmt::Display for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> std::fmt::Debug for ModInt<T> {
fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
write!(f, "{}", self.0)
}
}
impl<T> Default for ModInt<T> {
fn default() -> Self {
Self::zero()
}
}
impl<T: Modulo> std::str::FromStr for ModInt<T> {
type Err = std::num::ParseIntError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let val = s.parse::<u32>()?;
Ok(ModInt::new(val))
}
}
impl<T: Modulo> From<usize> for ModInt<T> {
fn from(val: usize) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as usize) as u32)
}
}
impl<T: Modulo> From<u64> for ModInt<T> {
fn from(val: u64) -> ModInt<T> {
ModInt::new_unchecked((val % T::modulo() as u64) as u32)
}
}
impl<T: Modulo> From<i64> for ModInt<T> {
fn from(val: i64) -> ModInt<T> {
let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
if v >= T::modulo() {
v -= T::modulo();
}
ModInt::new_unchecked(v)
}
}
impl<T> ModInt<T> {
pub fn new_unchecked(n: u32) -> Self {
ModInt(n, PhantomData)
}
pub fn zero() -> Self {
ModInt::new_unchecked(0)
}
pub fn one() -> Self {
ModInt::new_unchecked(1)
}
pub fn is_zero(&self) -> bool {
self.0 == 0
}
}
impl<T: Modulo> ModInt<T> {
pub fn new(d: u32) -> Self {
ModInt::new_unchecked(d % T::modulo())
}
pub fn pow(&self, mut n: u64) -> Self {
let mut t = Self::one();
let mut s = *self;
while n > 0 {
if n & 1 == 1 {
t *= s;
}
s *= s;
n >>= 1;
}
t
}
pub fn inv(&self) -> Self {
assert!(!self.is_zero());
self.pow(T::modulo() as u64 - 2)
}
pub fn fact(n: usize) -> Self {
(1..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn perm(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
}
pub fn binom(n: usize, k: usize) -> Self {
if k > n {
return Self::zero();
}
let k = k.min(n - k);
let mut nu = Self::one();
let mut de = Self::one();
for i in 0..k {
nu *= Self::from(n - i);
de *= Self::from(i + 1);
}
nu * de.inv()
}
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
fact: Vec<ModInt<T>>,
ifact: Vec<ModInt<T>>,
inv: Vec<ModInt<T>>,
}
impl<T: Modulo> Precalc<T> {
pub fn new(n: usize) -> Precalc<T> {
let mut inv = vec![ModInt::one(); n + 1];
let mut fact = vec![ModInt::one(); n + 1];
let mut ifact = vec![ModInt::one(); n + 1];
for i in 2..=n {
fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
}
ifact[n] = fact[n].inv();
if n > 0 {
inv[n] = ifact[n] * fact[n - 1];
}
for i in (1..n).rev() {
ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
inv[i] = ifact[i] * fact[i - 1];
}
Precalc { fact, ifact, inv }
}
pub fn inv(&self, n: usize) -> ModInt<T> {
assert!(n > 0);
self.inv[n]
}
pub fn fact(&self, n: usize) -> ModInt<T> {
self.fact[n]
}
pub fn ifact(&self, n: usize) -> ModInt<T> {
self.ifact[n]
}
pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[n - k]
}
pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
if k > n {
return ModInt::zero();
}
self.fact[n] * self.ifact[k] * self.ifact[n - k]
}
}
// ---------- end precalc ----------
type M = ModInt<ConstantModulo<998_244_353>>;
pub trait Monoid: Clone {
fn merge(&self, rhs: &Self) -> Self;
fn e() -> Self;
}
pub struct StaticXorSegmentTree<T> {
data: Vec<Vec<T>>,
size: usize,
}
impl<T> StaticXorSegmentTree<T>
where
T: Monoid,
{
pub fn new(a: &[T]) -> Self {
let size = a.len();
assert!(size.next_power_of_two() == size);
let k = size.trailing_zeros() as usize;
let mut data = Vec::with_capacity(k + 1);
data.push(Vec::from(a));
for i in 1..=k {
let mut a = Vec::with_capacity(size);
for data in data.last().unwrap().chunks(1 << i) {
let (l, r) = data.split_at(1 << (i - 1));
a.extend(l.iter().zip(r.iter()).map(|(l, r)| l.merge(r)));
a.extend(l.iter().zip(r.iter()).map(|(l, r)| r.merge(l)));
}
data.push(a);
}
Self { data, size }
}
pub fn find(&self, mut l: usize, mut r: usize, xor: usize) -> T {
assert!(l <= r && r <= self.size && xor < self.size);
if l == r {
return T::e();
}
let mut x = T::e();
let mut y = T::e();
for (shift, data) in self.data.iter().enumerate() {
if l >> shift & 1 == 1 {
x = x.merge(&data[l ^ xor]);
l += 1 << shift;
}
if r >> shift & 1 == 1 {
r -= 1 << shift;
y = data[r ^ xor].merge(&y);
}
if l == r {
break;
}
}
x.merge(&y)
}
pub fn find_all(&self, xor: usize) -> T {
assert!(xor < self.size);
self.data.last().unwrap()[xor].clone()
}
fn update(&mut self, pos: usize, v: T) {
assert!(pos < self.size);
self.data[0][pos] = v;
for shift in 1..self.data.len() {
let s = (pos >> shift) << shift;
let mut p = std::mem::take(&mut self.data[shift]);
let c = &self.data[shift - 1][s..(s + (1 << shift))];
let (l, r) = c.split_at(1 << (shift - 1));
let ab = l.iter().zip(r.iter()).chain(r.iter().zip(l.iter()));
for (p, (a, b)) in p[s..].iter_mut().zip(ab) {
*p = a.merge(b);
}
self.data[shift] = p;
}
}
}
pub struct XorSegmentTree<T> {
data: Vec<StaticXorSegmentTree<T>>,
size: usize,
batch: usize,
}
impl<T> XorSegmentTree<T>
where
T: Monoid,
{
pub fn new(a: &[T]) -> Self {
let size = a.len();
assert!(size.next_power_of_two() == size);
let batch = size.trailing_zeros() as usize / 2;
let data = a
.chunks(1 << batch)
.map(|a| StaticXorSegmentTree::new(a))
.collect();
Self { data, size, batch }
}
fn partition(&self, x: usize) -> (usize, usize) {
(x >> self.batch, x & ((1 << self.batch) - 1))
}
pub fn update(&mut self, x: usize, v: T) {
assert!(x < self.size);
let (a, b) = self.partition(x);
self.data[a].update(b, v);
}
pub fn find(&self, l: usize, r: usize, xor: usize) -> T {
assert!(l <= r && r <= self.size && xor < self.size);
if l == r {
return T::e();
}
let (u, d) = self.partition(xor);
let mut ans = T::e();
for i in 0..(self.size >> self.batch) {
let geta = i << self.batch;
let l = l.max(geta);
let r = r.min(geta + (1 << self.batch));
if l >= r {
continue;
}
if r - l == 1 << self.batch {
ans = ans.merge(&self.data[u ^ self.partition(l).0].find_all(d));
} else {
ans = ans.merge(&self.data[u ^ self.partition(l).0].find(l - geta, r - geta, d));
}
}
ans
}
}
akakimidori