結果

問題 No.2265 Xor Range Substring Sum Query
ユーザー akakimidoriakakimidori
提出日時 2023-04-07 23:19:27
言語 Rust
(1.77.0 + proconio)
結果
AC  
実行時間 1,214 ms / 5,000 ms
コード長 12,379 bytes
コンパイル時間 13,129 ms
コンパイル使用メモリ 379,600 KB
実行使用メモリ 38,528 KB
最終ジャッジ日時 2024-10-02 20:31:09
合計ジャッジ時間 30,119 ms
ジャッジサーバーID
(参考情報)
judge5 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,248 KB
testcase_02 AC 1 ms
5,248 KB
testcase_03 AC 1 ms
5,248 KB
testcase_04 AC 650 ms
38,016 KB
testcase_05 AC 658 ms
38,016 KB
testcase_06 AC 657 ms
38,016 KB
testcase_07 AC 669 ms
38,016 KB
testcase_08 AC 695 ms
38,016 KB
testcase_09 AC 992 ms
37,796 KB
testcase_10 AC 981 ms
37,760 KB
testcase_11 AC 976 ms
37,760 KB
testcase_12 AC 996 ms
37,888 KB
testcase_13 AC 983 ms
37,760 KB
testcase_14 AC 716 ms
37,456 KB
testcase_15 AC 725 ms
37,376 KB
testcase_16 AC 716 ms
37,456 KB
testcase_17 AC 698 ms
37,376 KB
testcase_18 AC 540 ms
38,528 KB
testcase_19 AC 550 ms
38,528 KB
testcase_20 AC 1,206 ms
38,016 KB
testcase_21 AC 1,214 ms
38,016 KB
testcase_22 AC 439 ms
19,200 KB
testcase_23 AC 433 ms
19,328 KB
権限があれば一括ダウンロードができます
コンパイルメッセージ
warning: unused variable: `n`
  --> src/main.rs:43:9
   |
43 |     let n: usize = sc.next();
   |         ^ help: if this is intentional, prefix it with an underscore: `_n`
   |
   = note: `#[warn(unused_variables)]` on by default

ソースコード

diff #

// ---------- begin scannner ----------
#[allow(dead_code)]
mod scanner {
    use std::str::FromStr;
    pub struct Scanner<'a> {
        it: std::str::SplitWhitespace<'a>,
    }
    impl<'a> Scanner<'a> {
        pub fn new(s: &'a String) -> Scanner<'a> {
            Scanner {
                it: s.split_whitespace(),
            }
        }
        pub fn next<T: FromStr>(&mut self) -> T {
            self.it.next().unwrap().parse::<T>().ok().unwrap()
        }
        pub fn next_bytes(&mut self) -> Vec<u8> {
            self.it.next().unwrap().bytes().collect()
        }
        pub fn next_chars(&mut self) -> Vec<char> {
            self.it.next().unwrap().chars().collect()
        }
        pub fn next_vec<T: FromStr>(&mut self, len: usize) -> Vec<T> {
            (0..len).map(|_| self.next()).collect()
        }
    }
}
// ---------- end scannner ----------

use std::io::Write;

fn main() {
    use std::io::Read;
    let mut s = String::new();
    std::io::stdin().read_to_string(&mut s).unwrap();
    let mut sc = scanner::Scanner::new(&s);
    let out = std::io::stdout();
    let mut out = std::io::BufWriter::new(out.lock());
    run(&mut sc, &mut out);
}

fn run<W: Write>(sc: &mut scanner::Scanner, out: &mut std::io::BufWriter<W>) {
    let n: usize = sc.next();
    let s = sc.next_bytes();
    let mut a = s.iter().map(|s| Value::new((*s - b'0') as u32)).collect::<Vec<_>>();
    let mut seg = XorSegmentTree::new(&a);
    let q: usize = sc.next();
    for _ in 0..q {
        let op: u8 = sc.next();
        if op == 1 {
            let x: usize = sc.next();
            let y: u32 = sc.next();
            seg.update(x, Value::new(y));
            a[x] = Value::new(y);
        } else {
            let l: usize = sc.next();
            let r = sc.next::<usize>() + 1;
            let x: usize = sc.next();
            let ans = seg.find(l, r, x).0;
            writeln!(out, "{}", ans).ok();
            /*
            let mut value = Value::e();
            for i in l..r {
                let i = i ^ x;
                value = value.merge(&a[i]);
            }
            println!("{:?}", value);
            */
        }
    }
}

#[derive(Clone, Debug)]
struct Value(M, M, M);

impl Value {
    fn new(a: u32) -> Self {
        Value(M::new(a), M::new(2), M::new(11))
    }
}

impl Monoid for Value {
    fn merge(&self, rhs: &Self) -> Self {
        let s = self.0 * rhs.2 + rhs.0 * self.1;
        let two = self.1 * rhs.1;
        let e = self.2 * rhs.2;
        Self(s, two, e)
    }
    fn e() -> Self {
        Value(M::zero(), M::one(), M::one())
    }
}

// ---------- begin modint ----------
use std::marker::*;
use std::ops::*;

pub trait Modulo {
    fn modulo() -> u32;
}

pub struct ConstantModulo<const M: u32>;

impl<const M: u32> Modulo for ConstantModulo<{ M }> {
    fn modulo() -> u32 {
        M
    }
}

pub struct ModInt<T>(u32, PhantomData<T>);

impl<T> Clone for ModInt<T> {
    fn clone(&self) -> Self {
        Self::new_unchecked(self.0)
    }
}

impl<T> Copy for ModInt<T> {}

impl<T: Modulo> Add for ModInt<T> {
    type Output = ModInt<T>;
    fn add(self, rhs: Self) -> Self::Output {
        let mut v = self.0 + rhs.0;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> AddAssign for ModInt<T> {
    fn add_assign(&mut self, rhs: Self) {
        *self = *self + rhs;
    }
}

impl<T: Modulo> Sub for ModInt<T> {
    type Output = ModInt<T>;
    fn sub(self, rhs: Self) -> Self::Output {
        let mut v = self.0 - rhs.0;
        if self.0 < rhs.0 {
            v += T::modulo();
        }
        Self::new_unchecked(v)
    }
}

impl<T: Modulo> SubAssign for ModInt<T> {
    fn sub_assign(&mut self, rhs: Self) {
        *self = *self - rhs;
    }
}

impl<T: Modulo> Mul for ModInt<T> {
    type Output = ModInt<T>;
    fn mul(self, rhs: Self) -> Self::Output {
        let v = self.0 as u64 * rhs.0 as u64 % T::modulo() as u64;
        Self::new_unchecked(v as u32)
    }
}

impl<T: Modulo> MulAssign for ModInt<T> {
    fn mul_assign(&mut self, rhs: Self) {
        *self = *self * rhs;
    }
}

impl<T: Modulo> Neg for ModInt<T> {
    type Output = ModInt<T>;
    fn neg(self) -> Self::Output {
        if self.is_zero() {
            Self::zero()
        } else {
            Self::new_unchecked(T::modulo() - self.0)
        }
    }
}

impl<T> std::fmt::Display for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> std::fmt::Debug for ModInt<T> {
    fn fmt<'a>(&self, f: &mut std::fmt::Formatter<'a>) -> std::fmt::Result {
        write!(f, "{}", self.0)
    }
}

impl<T> Default for ModInt<T> {
    fn default() -> Self {
        Self::zero()
    }
}

impl<T: Modulo> std::str::FromStr for ModInt<T> {
    type Err = std::num::ParseIntError;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let val = s.parse::<u32>()?;
        Ok(ModInt::new(val))
    }
}

impl<T: Modulo> From<usize> for ModInt<T> {
    fn from(val: usize) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as usize) as u32)
    }
}

impl<T: Modulo> From<u64> for ModInt<T> {
    fn from(val: u64) -> ModInt<T> {
        ModInt::new_unchecked((val % T::modulo() as u64) as u32)
    }
}

impl<T: Modulo> From<i64> for ModInt<T> {
    fn from(val: i64) -> ModInt<T> {
        let mut v = ((val % T::modulo() as i64) + T::modulo() as i64) as u32;
        if v >= T::modulo() {
            v -= T::modulo();
        }
        ModInt::new_unchecked(v)
    }
}

impl<T> ModInt<T> {
    pub fn new_unchecked(n: u32) -> Self {
        ModInt(n, PhantomData)
    }
    pub fn zero() -> Self {
        ModInt::new_unchecked(0)
    }
    pub fn one() -> Self {
        ModInt::new_unchecked(1)
    }
    pub fn is_zero(&self) -> bool {
        self.0 == 0
    }
}

impl<T: Modulo> ModInt<T> {
    pub fn new(d: u32) -> Self {
        ModInt::new_unchecked(d % T::modulo())
    }
    pub fn pow(&self, mut n: u64) -> Self {
        let mut t = Self::one();
        let mut s = *self;
        while n > 0 {
            if n & 1 == 1 {
                t *= s;
            }
            s *= s;
            n >>= 1;
        }
        t
    }
    pub fn inv(&self) -> Self {
        assert!(!self.is_zero());
        self.pow(T::modulo() as u64 - 2)
    }
    pub fn fact(n: usize) -> Self {
        (1..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn perm(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        ((n - k + 1)..=n).fold(Self::one(), |s, a| s * Self::from(a))
    }
    pub fn binom(n: usize, k: usize) -> Self {
        if k > n {
            return Self::zero();
        }
        let k = k.min(n - k);
        let mut nu = Self::one();
        let mut de = Self::one();
        for i in 0..k {
            nu *= Self::from(n - i);
            de *= Self::from(i + 1);
        }
        nu * de.inv()
    }
}
// ---------- end modint ----------
// ---------- begin precalc ----------
pub struct Precalc<T> {
    fact: Vec<ModInt<T>>,
    ifact: Vec<ModInt<T>>,
    inv: Vec<ModInt<T>>,
}

impl<T: Modulo> Precalc<T> {
    pub fn new(n: usize) -> Precalc<T> {
        let mut inv = vec![ModInt::one(); n + 1];
        let mut fact = vec![ModInt::one(); n + 1];
        let mut ifact = vec![ModInt::one(); n + 1];
        for i in 2..=n {
            fact[i] = fact[i - 1] * ModInt::new_unchecked(i as u32);
        }
        ifact[n] = fact[n].inv();
        if n > 0 {
            inv[n] = ifact[n] * fact[n - 1];
        }
        for i in (1..n).rev() {
            ifact[i] = ifact[i + 1] * ModInt::new_unchecked((i + 1) as u32);
            inv[i] = ifact[i] * fact[i - 1];
        }
        Precalc { fact, ifact, inv }
    }
    pub fn inv(&self, n: usize) -> ModInt<T> {
        assert!(n > 0);
        self.inv[n]
    }
    pub fn fact(&self, n: usize) -> ModInt<T> {
        self.fact[n]
    }
    pub fn ifact(&self, n: usize) -> ModInt<T> {
        self.ifact[n]
    }
    pub fn perm(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[n - k]
    }
    pub fn binom(&self, n: usize, k: usize) -> ModInt<T> {
        if k > n {
            return ModInt::zero();
        }
        self.fact[n] * self.ifact[k] * self.ifact[n - k]
    }
}
// ---------- end precalc ----------

type M = ModInt<ConstantModulo<998_244_353>>;

pub trait Monoid: Clone {
    fn merge(&self, rhs: &Self) -> Self;
    fn e() -> Self;
}

pub struct StaticXorSegmentTree<T> {
    data: Vec<Vec<T>>,
    size: usize,
}

impl<T> StaticXorSegmentTree<T>
where
    T: Monoid,
{
    pub fn new(a: &[T]) -> Self {
        let size = a.len();
        assert!(size.next_power_of_two() == size);
        let k = size.trailing_zeros() as usize;
        let mut data = Vec::with_capacity(k + 1);
        data.push(Vec::from(a));
        for i in 1..=k {
            let mut a = Vec::with_capacity(size);
            for data in data.last().unwrap().chunks(1 << i) {
                let (l, r) = data.split_at(1 << (i - 1));
                a.extend(l.iter().zip(r.iter()).map(|(l, r)| l.merge(r)));
                a.extend(l.iter().zip(r.iter()).map(|(l, r)| r.merge(l)));
            }
            data.push(a);
        }
        Self { data, size }
    }
    pub fn find(&self, mut l: usize, mut r: usize, xor: usize) -> T {
        assert!(l <= r && r <= self.size && xor < self.size);
        if l == r {
            return T::e();
        }
        let mut x = T::e();
        let mut y = T::e();
        for (shift, data) in self.data.iter().enumerate() {
            if l >> shift & 1 == 1 {
                x = x.merge(&data[l ^ xor]);
                l += 1 << shift;
            }
            if r >> shift & 1 == 1 {
                r -= 1 << shift;
                y = data[r ^ xor].merge(&y);
            }
            if l == r {
                break;
            }
        }
        x.merge(&y)
    }
    pub fn find_all(&self, xor: usize) -> T {
        assert!(xor < self.size);
        self.data.last().unwrap()[xor].clone()
    }
    fn update(&mut self, pos: usize, v: T) {
        assert!(pos < self.size);
        self.data[0][pos] = v;
        for shift in 1..self.data.len() {
            let s = (pos >> shift) << shift;
            let mut p = std::mem::take(&mut self.data[shift]);
            let c = &self.data[shift - 1][s..(s + (1 << shift))];
            let (l, r) = c.split_at(1 << (shift - 1));
            let ab = l.iter().zip(r.iter()).chain(r.iter().zip(l.iter()));
            for (p, (a, b)) in p[s..].iter_mut().zip(ab) {
                *p = a.merge(b);
            }
            self.data[shift] = p;
        }
    }
}

pub struct XorSegmentTree<T> {
    data: Vec<StaticXorSegmentTree<T>>,
    size: usize,
    batch: usize,
}

impl<T> XorSegmentTree<T>
where
    T: Monoid,
{
    pub fn new(a: &[T]) -> Self {
        let size = a.len();
        assert!(size.next_power_of_two() == size);
        let batch = size.trailing_zeros() as usize / 2;
        let data = a
            .chunks(1 << batch)
            .map(|a| StaticXorSegmentTree::new(a))
            .collect();
        Self { data, size, batch }
    }
    fn partition(&self, x: usize) -> (usize, usize) {
        (x >> self.batch, x & ((1 << self.batch) - 1))
    }
    pub fn update(&mut self, x: usize, v: T) {
        assert!(x < self.size);
        let (a, b) = self.partition(x);
        self.data[a].update(b, v);
    }
    pub fn find(&self, l: usize, r: usize, xor: usize) -> T {
        assert!(l <= r && r <= self.size && xor < self.size);
        if l == r {
            return T::e();
        }
        let (u, d) = self.partition(xor);
        let mut ans = T::e();
        for i in 0..(self.size >> self.batch) {
            let geta = i << self.batch;
            let l = l.max(geta);
            let r = r.min(geta + (1 << self.batch));
            if l >= r {
                continue;
            }
            if r - l == 1 << self.batch {
                ans = ans.merge(&self.data[u ^ self.partition(l).0].find_all(d));
            } else {
                ans = ans.merge(&self.data[u ^ self.partition(l).0].find(l - geta, r - geta, d));
            }
        }
        ans
    }
}
0