結果
| 問題 | No.2281 K → K-1 01 Flip |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-04-22 00:02:40 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 118 ms / 2,000 ms |
| コード長 | 12,818 bytes |
| 記録 | |
| コンパイル時間 | 1,814 ms |
| コンパイル使用メモリ | 198,404 KB |
| 最終ジャッジ日時 | 2025-02-12 12:42:43 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 1 |
| other | AC * 56 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;
template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <typename T>
using maxheap = priority_queue<T>;
template <typename T>
bool chmax(T &x, const T &y) {
return (x < y) ? (x = y, true) : false;
}
template <typename T>
bool chmin(T &x, const T &y) {
return (x > y) ? (x = y, true) : false;
}
template <typename T>
int flg(T x, int i) {
return (x >> i) & 1;
}
int popcount(int x) { return __builtin_popcount(x); }
int popcount(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }
template <typename T>
void print(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
if (v.empty()) cout << '\n';
}
template <typename T>
void printn(const vector<T> &v, T x = 0) {
int n = v.size();
for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}
template <typename T>
int lb(const vector<T> &v, T x) {
return lower_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
int ub(const vector<T> &v, T x) {
return upper_bound(begin(v), end(v), x) - begin(v);
}
template <typename T>
void rearrange(vector<T> &v) {
sort(begin(v), end(v));
v.erase(unique(begin(v), end(v)), end(v));
}
template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
int n = v.size();
vector<int> ret(n);
iota(begin(ret), end(ret), 0);
sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
return ret;
}
template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
int n = a.size();
vector<T> b(n);
for (int i = 0; i < n; i++) b[i] = a[ord[i]];
swap(a, b);
}
template <typename T>
T floor(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? x / y : (x - y + 1) / y);
}
template <typename T>
T ceil(T x, T y) {
assert(y != 0);
if (y < 0) x = -x, y = -y;
return (x >= 0 ? (x + y - 1) / y : x / y);
}
template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first + q.first, p.second + q.second);
}
template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
return make_pair(p.first - q.first, p.second - q.second);
}
template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
S a;
T b;
is >> a >> b;
p = make_pair(a, b);
return is;
}
template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
return os << p.first << ' ' << p.second;
}
struct io_setup {
io_setup() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout << fixed << setprecision(15);
}
} io_setup;
const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;
template <typename Monoid>
struct Segment_Tree {
using M = typename Monoid::V;
int n, m;
vector<M> seg;
// f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a
Segment_Tree(const vector<M> &v) : n(v.size()) {
m = 1;
while (m < n) m <<= 1;
seg.assign(2 * m, Monoid::id);
copy(begin(v), end(v), begin(seg) + m);
for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
}
Segment_Tree(int n, const M &x) : Segment_Tree(vector<M>(n, x)) {}
void update(int i, const M &x, bool apply = false) {
seg[i + m] = apply ? Monoid::merge(seg[i + m], x) : x;
i += m;
while (i >>= 1) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
}
M query(int l, int r) const {
l = max(l, 0), r = min(r, n);
M L = Monoid::id, R = Monoid::id;
l += m, r += m;
while (l < r) {
if (l & 1) L = Monoid::merge(L, seg[l++]);
if (r & 1) R = Monoid::merge(seg[--r], R);
l >>= 1, r >>= 1;
}
return Monoid::merge(L, R);
}
M operator[](int i) const { return seg[i + m]; }
template <typename C>
int find_subtree(int i, const C &check, M &x, int type) const {
while (i < m) {
M nxt = type ? Monoid::merge(seg[2 * i + type], x) : Monoid::merge(x, seg[2 * i + type]);
if (check(nxt)) {
i = 2 * i + type;
} else {
x = nxt;
i = 2 * i + (type ^ 1);
}
}
return i - m;
}
// check(区間 [l,r] での演算結果) を満たす最小の r (存在しなければ n)
template <typename C>
int find_first(int l, const C &check) const {
M L = Monoid::id;
int a = l + m, b = 2 * m;
while (a < b) {
if (a & 1) {
M nxt = Monoid::merge(L, seg[a]);
if (check(nxt)) return find_subtree(a, check, L, 0);
L = nxt;
a++;
}
a >>= 1, b >>= 1;
}
return n;
}
// check((区間 [l,r) での演算結果)) を満たす最大の l (存在しなければ -1)
template <typename C>
int find_last(int r, const C &check) const {
M R = Monoid::id;
int a = m, b = r + m;
while (a < b) {
if ((b & 1) || a == 1) {
M nxt = Monoid::merge(seg[--b], R);
if (check(nxt)) return find_subtree(b, check, R, 1);
R = nxt;
}
a >>= 1, b >>= 1;
}
return -1;
}
};
// sum
template <typename T>
struct Plus_Monoid {
using V = T;
static constexpr V merge(V l, V r) { return l + r; };
static const V id;
};
template <typename T>
const T Plus_Monoid<T>::id = 0;
// min
template <typename T>
struct Min_Monoid {
using V = T;
static constexpr V merge(V l, V r) { return min(l, r); };
static const V id;
};
template <typename T>
const T Min_Monoid<T>::id = numeric_limits<T>::max();
// max
template <typename T>
struct Max_Monoid {
using V = T;
static constexpr V merge(V l, V r) { return max(l, r); };
static const V id;
};
template <typename T>
const T Max_Monoid<T>::id = numeric_limits<T>::min();
// 代入
template <typename T>
struct Update_Monoid {
using V = T;
static constexpr V merge(V l, V r) {
if (l == id) return r;
if (r == id) return l;
return r;
}
static const V id;
};
template <typename T>
const T Update_Monoid<T>::id = numeric_limits<T>::max();
// min count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(V l, V r) {
if (l.first < r.first) return l;
if (l.first > r.first) return r;
return V(l.first, l.second + r.second);
}
static const V id;
};
template <typename T, typename S>
const pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max(), 0);
// max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Monoid {
using V = pair<T, S>;
static constexpr V merge(V l, V r) {
if (l.first > r.first) return l;
if (l.first < r.first) return r;
return V(l.first, l.second + r.second);
}
static const V id;
};
template <typename T, typename S>
const pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::min(), 0);
// 一次関数 ax+b の合成 (左から順に作用)
template <typename T>
struct Affine_Monoid {
using V = pair<T, T>;
static constexpr V merge(V l, V r) { return V(l.first * r.first, l.second * r.first + r.second); };
static const V id;
};
template <typename T>
const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);
// モノイドの直積
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
using V1 = typename Monoid_1::V;
using V2 = typename Monoid_2::V;
using V = pair<V1, V2>;
static constexpr V merge(V l, V r) { return V(Monoid_1::merge(l.first, r.first), Monoid_2::merge(l.second, r.second)); }
static const V id;
};
template <typename Monoid_1, typename Monoid_2>
const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);
// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(M l, O r) { return l + r; };
};
// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Plus_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(M l, O r) { return l + r; };
};
// range add range min count (T:最小値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
using Monoid = Min_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); };
};
// range add range max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
using Monoid = Max_Count_Monoid<T, S>;
using Operator = Plus_Monoid<T>;
using M = pair<T, S>;
using O = T;
static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); };
};
// range add range sum
template <typename T>
struct Plus_Plus_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Plus_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(M l, O r) { return M(l.first + r * l.second, l.second); }
};
// range update range sum
template <typename T>
struct Plus_Update_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
using Operator = Update_Monoid<T>;
using M = pair<T, int>;
using O = T;
static constexpr M merge(M l, O r) { return M(r * l.second, l.second); }
};
// range update range min
template <typename T>
struct Min_Update_Monoid {
using Monoid = Min_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(M l, M r) { return r == Operator::id ? l : r; }
};
// range update range max
template <typename T>
struct Max_Update_Monoid {
using Monoid = Max_Monoid<T>;
using Operator = Update_Monoid<T>;
using M = T;
using O = T;
static constexpr M merge(M l, M r) { return r == Operator::id ? l : r; }
};
// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
using Operator = Affine_Monoid<T>;
using M = pair<T, T>;
using O = pair<T, T>;
static constexpr M merge(M l, O r) { return M(r.first * l.first + r.second * l.second, l.second); };
};
void solve() {
int N, Q;
string S;
cin >> N >> Q >> S;
vector<int> a(N);
a[N - 1] = 1;
per(i, N - 1) {
a[i] = 1;
if (S[i] == S[i + 1]) a[i] = a[i + 1] + 1;
}
vector<int> s(N + 1, 0);
rep(i, N) {
s[i + 1] = s[i];
if (S[i] == '0') s[i + 1]++;
if (S[i] == '1') s[i + 1]--;
}
// print(a), print(s);
Segment_Tree<Max_Monoid<int>> seg(a);
while (Q--) {
int L, R, K;
cin >> L >> R >> K;
L--;
if (seg.query(L, R - K + 1) < K) {
cout << R - L << '\n';
} else {
int t = s[R] - s[L];
t %= (2 * K - 1);
// cout << "! " << t << '\n';
if (t < 0) t += 2 * K - 1;
if (t >= K) t -= 2 * K - 1;
cout << 2 * (K - 1) - abs(t) << '\n';
}
}
}
int main() {
int T = 1;
// cin >> T;
while (T--) solve();
}