結果

問題 No.2281 K → K-1 01 Flip
ユーザー tokusakuraitokusakurai
提出日時 2023-04-22 00:02:40
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 115 ms / 2,000 ms
コード長 12,818 bytes
コンパイル時間 2,958 ms
コンパイル使用メモリ 206,128 KB
実行使用メモリ 7,168 KB
最終ジャッジ日時 2024-11-06 17:20:35
合計ジャッジ時間 11,407 ms
ジャッジサーバーID
(参考情報)
judge1 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 11 ms
5,376 KB
testcase_02 AC 85 ms
5,248 KB
testcase_03 AC 92 ms
6,784 KB
testcase_04 AC 24 ms
5,248 KB
testcase_05 AC 40 ms
5,504 KB
testcase_06 AC 74 ms
5,248 KB
testcase_07 AC 24 ms
6,784 KB
testcase_08 AC 59 ms
6,784 KB
testcase_09 AC 85 ms
5,248 KB
testcase_10 AC 68 ms
5,248 KB
testcase_11 AC 28 ms
5,248 KB
testcase_12 AC 25 ms
6,912 KB
testcase_13 AC 84 ms
5,248 KB
testcase_14 AC 45 ms
5,504 KB
testcase_15 AC 23 ms
5,248 KB
testcase_16 AC 83 ms
5,248 KB
testcase_17 AC 97 ms
5,376 KB
testcase_18 AC 89 ms
5,248 KB
testcase_19 AC 43 ms
6,528 KB
testcase_20 AC 28 ms
5,248 KB
testcase_21 AC 36 ms
6,656 KB
testcase_22 AC 82 ms
5,248 KB
testcase_23 AC 6 ms
5,248 KB
testcase_24 AC 48 ms
5,248 KB
testcase_25 AC 35 ms
5,248 KB
testcase_26 AC 32 ms
6,528 KB
testcase_27 AC 62 ms
6,912 KB
testcase_28 AC 30 ms
6,784 KB
testcase_29 AC 3 ms
5,248 KB
testcase_30 AC 52 ms
5,248 KB
testcase_31 AC 56 ms
5,376 KB
testcase_32 AC 76 ms
6,528 KB
testcase_33 AC 41 ms
5,248 KB
testcase_34 AC 65 ms
5,248 KB
testcase_35 AC 48 ms
6,912 KB
testcase_36 AC 76 ms
5,248 KB
testcase_37 AC 74 ms
5,248 KB
testcase_38 AC 83 ms
5,248 KB
testcase_39 AC 41 ms
5,248 KB
testcase_40 AC 15 ms
5,248 KB
testcase_41 AC 106 ms
7,040 KB
testcase_42 AC 109 ms
7,168 KB
testcase_43 AC 111 ms
7,040 KB
testcase_44 AC 105 ms
7,040 KB
testcase_45 AC 108 ms
7,040 KB
testcase_46 AC 111 ms
7,168 KB
testcase_47 AC 110 ms
7,040 KB
testcase_48 AC 109 ms
7,040 KB
testcase_49 AC 107 ms
7,168 KB
testcase_50 AC 115 ms
7,040 KB
testcase_51 AC 109 ms
7,168 KB
testcase_52 AC 108 ms
7,168 KB
testcase_53 AC 109 ms
7,168 KB
testcase_54 AC 113 ms
7,040 KB
testcase_55 AC 110 ms
7,040 KB
testcase_56 AC 109 ms
7,040 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define rep(i, n) for (int i = 0; i < (n); i++)
#define per(i, n) for (int i = (n)-1; i >= 0; i--)
#define rep2(i, l, r) for (int i = (l); i < (r); i++)
#define per2(i, l, r) for (int i = (r)-1; i >= (l); i--)
#define each(e, v) for (auto &e : v)
#define MM << " " <<
#define pb push_back
#define eb emplace_back
#define all(x) begin(x), end(x)
#define rall(x) rbegin(x), rend(x)
#define sz(x) (int)x.size()
using ll = long long;
using pii = pair<int, int>;
using pil = pair<int, ll>;
using pli = pair<ll, int>;
using pll = pair<ll, ll>;

template <typename T>
using minheap = priority_queue<T, vector<T>, greater<T>>;

template <typename T>
using maxheap = priority_queue<T>;

template <typename T>
bool chmax(T &x, const T &y) {
    return (x < y) ? (x = y, true) : false;
}

template <typename T>
bool chmin(T &x, const T &y) {
    return (x > y) ? (x = y, true) : false;
}

template <typename T>
int flg(T x, int i) {
    return (x >> i) & 1;
}

int popcount(int x) { return __builtin_popcount(x); }
int popcount(ll x) { return __builtin_popcountll(x); }
int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }
int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }
int botbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }
int botbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }

template <typename T>
void print(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << (i == n - 1 ? '\n' : ' ');
    if (v.empty()) cout << '\n';
}

template <typename T>
void printn(const vector<T> &v, T x = 0) {
    int n = v.size();
    for (int i = 0; i < n; i++) cout << v[i] + x << '\n';
}

template <typename T>
int lb(const vector<T> &v, T x) {
    return lower_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
int ub(const vector<T> &v, T x) {
    return upper_bound(begin(v), end(v), x) - begin(v);
}

template <typename T>
void rearrange(vector<T> &v) {
    sort(begin(v), end(v));
    v.erase(unique(begin(v), end(v)), end(v));
}

template <typename T>
vector<int> id_sort(const vector<T> &v, bool greater = false) {
    int n = v.size();
    vector<int> ret(n);
    iota(begin(ret), end(ret), 0);
    sort(begin(ret), end(ret), [&](int i, int j) { return greater ? v[i] > v[j] : v[i] < v[j]; });
    return ret;
}

template <typename T>
void reorder(vector<T> &a, const vector<int> &ord) {
    int n = a.size();
    vector<T> b(n);
    for (int i = 0; i < n; i++) b[i] = a[ord[i]];
    swap(a, b);
}

template <typename T>
T floor(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? x / y : (x - y + 1) / y);
}

template <typename T>
T ceil(T x, T y) {
    assert(y != 0);
    if (y < 0) x = -x, y = -y;
    return (x >= 0 ? (x + y - 1) / y : x / y);
}

template <typename S, typename T>
pair<S, T> operator+(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first + q.first, p.second + q.second);
}

template <typename S, typename T>
pair<S, T> operator-(const pair<S, T> &p, const pair<S, T> &q) {
    return make_pair(p.first - q.first, p.second - q.second);
}

template <typename S, typename T>
istream &operator>>(istream &is, pair<S, T> &p) {
    S a;
    T b;
    is >> a >> b;
    p = make_pair(a, b);
    return is;
}

template <typename S, typename T>
ostream &operator<<(ostream &os, const pair<S, T> &p) {
    return os << p.first << ' ' << p.second;
}

struct io_setup {
    io_setup() {
        ios_base::sync_with_stdio(false);
        cin.tie(NULL);
        cout << fixed << setprecision(15);
    }
} io_setup;

const int inf = (1 << 30) - 1;
const ll INF = (1LL << 60) - 1;
// const int MOD = 1000000007;
const int MOD = 998244353;

template <typename Monoid>
struct Segment_Tree {
    using M = typename Monoid::V;
    int n, m;
    vector<M> seg;

    // f(f(a,b),c) = f(a,f(b,c)), f(e1,a) = f(a,e1) = a

    Segment_Tree(const vector<M> &v) : n(v.size()) {
        m = 1;
        while (m < n) m <<= 1;
        seg.assign(2 * m, Monoid::id);
        copy(begin(v), end(v), begin(seg) + m);
        for (int i = m - 1; i > 0; i--) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
    }

    Segment_Tree(int n, const M &x) : Segment_Tree(vector<M>(n, x)) {}

    void update(int i, const M &x, bool apply = false) {
        seg[i + m] = apply ? Monoid::merge(seg[i + m], x) : x;
        i += m;
        while (i >>= 1) seg[i] = Monoid::merge(seg[2 * i], seg[2 * i + 1]);
    }

    M query(int l, int r) const {
        l = max(l, 0), r = min(r, n);
        M L = Monoid::id, R = Monoid::id;
        l += m, r += m;
        while (l < r) {
            if (l & 1) L = Monoid::merge(L, seg[l++]);
            if (r & 1) R = Monoid::merge(seg[--r], R);
            l >>= 1, r >>= 1;
        }
        return Monoid::merge(L, R);
    }

    M operator[](int i) const { return seg[i + m]; }

    template <typename C>
    int find_subtree(int i, const C &check, M &x, int type) const {
        while (i < m) {
            M nxt = type ? Monoid::merge(seg[2 * i + type], x) : Monoid::merge(x, seg[2 * i + type]);
            if (check(nxt)) {
                i = 2 * i + type;
            } else {
                x = nxt;
                i = 2 * i + (type ^ 1);
            }
        }
        return i - m;
    }

    // check(区間 [l,r] での演算結果) を満たす最小の r (存在しなければ n)
    template <typename C>
    int find_first(int l, const C &check) const {
        M L = Monoid::id;
        int a = l + m, b = 2 * m;
        while (a < b) {
            if (a & 1) {
                M nxt = Monoid::merge(L, seg[a]);
                if (check(nxt)) return find_subtree(a, check, L, 0);
                L = nxt;
                a++;
            }
            a >>= 1, b >>= 1;
        }
        return n;
    }

    // check((区間 [l,r) での演算結果)) を満たす最大の l (存在しなければ -1)
    template <typename C>
    int find_last(int r, const C &check) const {
        M R = Monoid::id;
        int a = m, b = r + m;
        while (a < b) {
            if ((b & 1) || a == 1) {
                M nxt = Monoid::merge(seg[--b], R);
                if (check(nxt)) return find_subtree(b, check, R, 1);
                R = nxt;
            }
            a >>= 1, b >>= 1;
        }
        return -1;
    }
};

// sum
template <typename T>
struct Plus_Monoid {
    using V = T;
    static constexpr V merge(V l, V r) { return l + r; };
    static const V id;
};

template <typename T>
const T Plus_Monoid<T>::id = 0;

// min
template <typename T>
struct Min_Monoid {
    using V = T;
    static constexpr V merge(V l, V r) { return min(l, r); };
    static const V id;
};

template <typename T>
const T Min_Monoid<T>::id = numeric_limits<T>::max();

// max
template <typename T>
struct Max_Monoid {
    using V = T;
    static constexpr V merge(V l, V r) { return max(l, r); };
    static const V id;
};

template <typename T>
const T Max_Monoid<T>::id = numeric_limits<T>::min();

// 代入
template <typename T>
struct Update_Monoid {
    using V = T;
    static constexpr V merge(V l, V r) {
        if (l == id) return r;
        if (r == id) return l;
        return r;
    }
    static const V id;
};

template <typename T>
const T Update_Monoid<T>::id = numeric_limits<T>::max();

// min count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Monoid {
    using V = pair<T, S>;
    static constexpr V merge(V l, V r) {
        if (l.first < r.first) return l;
        if (l.first > r.first) return r;
        return V(l.first, l.second + r.second);
    }
    static const V id;
};

template <typename T, typename S>
const pair<T, S> Min_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::max(), 0);

// max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Monoid {
    using V = pair<T, S>;
    static constexpr V merge(V l, V r) {
        if (l.first > r.first) return l;
        if (l.first < r.first) return r;
        return V(l.first, l.second + r.second);
    }
    static const V id;
};

template <typename T, typename S>
const pair<T, S> Max_Count_Monoid<T, S>::id = make_pair(numeric_limits<T>::min(), 0);

// 一次関数 ax+b の合成 (左から順に作用)
template <typename T>
struct Affine_Monoid {
    using V = pair<T, T>;
    static constexpr V merge(V l, V r) { return V(l.first * r.first, l.second * r.first + r.second); };
    static const V id;
};

template <typename T>
const pair<T, T> Affine_Monoid<T>::id = make_pair(1, 0);

// モノイドの直積
template <typename Monoid_1, typename Monoid_2>
struct Cartesian_Product_Monoid {
    using V1 = typename Monoid_1::V;
    using V2 = typename Monoid_2::V;
    using V = pair<V1, V2>;
    static constexpr V merge(V l, V r) { return V(Monoid_1::merge(l.first, r.first), Monoid_2::merge(l.second, r.second)); }
    static const V id;
};

template <typename Monoid_1, typename Monoid_2>
const pair<typename Monoid_1::V, typename Monoid_2::V> Cartesian_Product_Monoid<Monoid_1, Monoid_2>::id = make_pair(Monoid_1::id, Monoid_2::id);

// range add range min
template <typename T>
struct Min_Plus_Acted_Monoid {
    using Monoid = Min_Monoid<T>;
    using Operator = Plus_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(M l, O r) { return l + r; };
};

// range add range max
template <typename T>
struct Max_Plus_Acted_Monoid {
    using Monoid = Max_Monoid<T>;
    using Operator = Plus_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(M l, O r) { return l + r; };
};

// range add range min count (T:最小値の型、S:個数の型)
template <typename T, typename S>
struct Min_Count_Add_Acted_Monoid {
    using Monoid = Min_Count_Monoid<T, S>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, S>;
    using O = T;
    static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); };
};

// range add range max count (T:最大値の型、S:個数の型)
template <typename T, typename S>
struct Max_Count_Add_Acted_Monoid {
    using Monoid = Max_Count_Monoid<T, S>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, S>;
    using O = T;
    static constexpr M merge(M l, O r) { return make_pair(l.first + r, l.second); };
};

// range add range sum
template <typename T>
struct Plus_Plus_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
    using Operator = Plus_Monoid<T>;
    using M = pair<T, int>;
    using O = T;
    static constexpr M merge(M l, O r) { return M(l.first + r * l.second, l.second); }
};

// range update range sum
template <typename T>
struct Plus_Update_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<int>>;
    using Operator = Update_Monoid<T>;
    using M = pair<T, int>;
    using O = T;
    static constexpr M merge(M l, O r) { return M(r * l.second, l.second); }
};

// range update range min
template <typename T>
struct Min_Update_Monoid {
    using Monoid = Min_Monoid<T>;
    using Operator = Update_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(M l, M r) { return r == Operator::id ? l : r; }
};

// range update range max
template <typename T>
struct Max_Update_Monoid {
    using Monoid = Max_Monoid<T>;
    using Operator = Update_Monoid<T>;
    using M = T;
    using O = T;
    static constexpr M merge(M l, M r) { return r == Operator::id ? l : r; }
};

// range affine range sum
template <typename T>
struct Plus_Affine_Acted_Monoid {
    using Monoid = Cartesian_Product_Monoid<Plus_Monoid<T>, Plus_Monoid<T>>;
    using Operator = Affine_Monoid<T>;
    using M = pair<T, T>;
    using O = pair<T, T>;
    static constexpr M merge(M l, O r) { return M(r.first * l.first + r.second * l.second, l.second); };
};

void solve() {
    int N, Q;
    string S;
    cin >> N >> Q >> S;

    vector<int> a(N);
    a[N - 1] = 1;
    per(i, N - 1) {
        a[i] = 1;
        if (S[i] == S[i + 1]) a[i] = a[i + 1] + 1;
    }

    vector<int> s(N + 1, 0);
    rep(i, N) {
        s[i + 1] = s[i];
        if (S[i] == '0') s[i + 1]++;
        if (S[i] == '1') s[i + 1]--;
    }
    // print(a), print(s);

    Segment_Tree<Max_Monoid<int>> seg(a);

    while (Q--) {
        int L, R, K;
        cin >> L >> R >> K;
        L--;

        if (seg.query(L, R - K + 1) < K) {
            cout << R - L << '\n';
        } else {
            int t = s[R] - s[L];
            t %= (2 * K - 1);
            // cout << "! " << t << '\n';
            if (t < 0) t += 2 * K - 1;
            if (t >= K) t -= 2 * K - 1;
            cout << 2 * (K - 1) - abs(t) << '\n';
        }
    }
}

int main() {
    int T = 1;
    // cin >> T;
    while (T--) solve();
}
0