結果

問題 No.8046 yukicoderの過去問
コンテスト
ユーザー vwxyz
提出日時 2023-04-22 06:29:31
言語 Python3
(3.13.1 + numpy 2.2.1 + scipy 1.14.1)
結果
TLE  
実行時間 -
コード長 4,333 bytes
記録
コンパイル時間 161 ms
コンパイル使用メモリ 13,184 KB
実行使用メモリ 50,604 KB
最終ジャッジ日時 2024-11-06 21:30:00
合計ジャッジ時間 6,527 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other TLE * 1 -- * 8
権限があれば一括ダウンロードができます

ソースコード

diff #
raw source code

import bisect
import copy
import decimal
import fractions
import functools
import heapq
import itertools
import math
import random
import sys
from collections import Counter,deque,defaultdict
from functools import lru_cache,reduce
from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max
def _heappush_max(heap,item):
    heap.append(item)
    heapq._siftdown_max(heap, 0, len(heap)-1)
def _heappushpop_max(heap, item):
    if heap and item < heap[0]:
        item, heap[0] = heap[0], item
        heapq._siftup_max(heap, 0)
    return item
from math import gcd as GCD
read=sys.stdin.read
readline=sys.stdin.readline
readlines=sys.stdin.readlines

def FFT(polynomial0,polynomial1,digit=10**5):
    def DFT(polynomial,n,inverse=False):
        if inverse:
            primitive_root=[math.cos(-i*2*math.pi/(1<<n))+math.sin(-i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        else:
            primitive_root=[math.cos(i*2*math.pi/(1<<n))+math.sin(i*2*math.pi/(1<<n))*1j for i in range(1<<n)]
        if inverse:
            for bit in range(1,n+1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        polynomial[s],polynomial[t]=polynomial[s]+polynomial[t]*primitive_root[j<<n-bit],polynomial[s]-polynomial[t]*primitive_root[j<<n-bit]
        else:
            for bit in range(n,0,-1):
                a=1<<bit-1
                for i in range(1<<n-bit):
                    for j in range(a):
                        s=i*2*a+j
                        t=s+a
                        polynomial[s],polynomial[t]=polynomial[s]+polynomial[t],primitive_root[j<<n-bit]*(polynomial[s]-polynomial[t])

    def FFT_(polynomial0,polynomial1):
        N0=len(polynomial0)
        N1=len(polynomial1)
        N=N0+N1-1
        n=(N-1).bit_length()
        polynomial0=polynomial0+[0]*((1<<n)-N0)
        polynomial1=polynomial1+[0]*((1<<n)-N1)
        DFT(polynomial0,n)
        DFT(polynomial1,n)
        fft=[x*y for x,y in zip(polynomial0,polynomial1)]
        DFT(fft,n,inverse=True)
        fft=[round((fft[i]/(1<<n)).real) for i in range(N)]
        return fft

    N0=len(polynomial0)
    N1=len(polynomial1)
    N=N0+N1-1
    polynomial00,polynomial01=[None]*N0,[None]*N0
    polynomial10,polynomial11=[None]*N1,[None]*N1
    for i in range(N0):
        polynomial00[i],polynomial01[i]=divmod(polynomial0[i],digit)
    for i in range(N1):
        polynomial10[i],polynomial11[i]=divmod(polynomial1[i],digit)
    polynomial=[0]*(N)
    a=digit**2-digit
    for i,x in enumerate(FFT_(polynomial00,polynomial10)):
        polynomial[i]+=x*a%mod
    a=digit-1
    for i,x in enumerate(FFT_(polynomial01,polynomial11)):
        polynomial[i]-=x*a%mod
    for i,x in enumerate(FFT_([x1+x2 for x1,x2 in zip(polynomial00,polynomial01)],[x1+x2 for x1,x2 in zip(polynomial10,polynomial11)])):
        polynomial[i]+=x*digit%mod
        polynomial[i]%=mod
    return polynomial

def Bostan_Mori(poly_nume,poly_deno,N,mod=0,fft=False,ntt=False):
    if ntt:
        convolve=NTT
    elif fft:
        convolve=FFT
    else:
        def convolve(poly_nume,poly_deno):
            conv=[0]*(len(poly_nume)+len(poly_deno)-1)
            for i in range(len(poly_nume)):
                for j in range(len(poly_deno)):
                    x=poly_nume[i]*poly_deno[j]
                    if mod:
                        x%=mod
                    conv[i+j]+=x
            if mod:
                for i in range(len(conv)):
                    conv[i]%=mod
            return conv
    while N:
        poly_deno_=[-x if i%2 else x for i,x in enumerate(poly_deno)]
        if N%2:
            poly_nume=convolve(poly_nume,poly_deno_)[1::2]
        else:
            poly_nume=convolve(poly_nume,poly_deno_)[::2]
        poly_deno=convolve(poly_deno,poly_deno_)[::2]
        if fft and mod:
            for i in range(len(poly_nume)):
                poly_nume[i]%=mod
            for i in range(len(poly_deno)):
                poly_deno[i]%=mod
        N//=2
    return poly_nume[0]

N=int(readline())
K=int(readline())
mod=10**9+7
nume=[1]
deno=[0]*(10**5+1)
deno[0]=1
for x in map(int,readline().split()):
    deno[x]=mod-1
ans=Bostan_Mori(nume,deno,N,mod=10**9+7,fft=True)
print(ans)
0