結果

問題 No.1661 Sum is Prime (Hard Version)
ユーザー akuaakua
提出日時 2023-04-22 20:42:01
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 6,881 bytes
コンパイル時間 6,248 ms
コンパイル使用メモリ 223,312 KB
実行使用メモリ 35,712 KB
最終ジャッジ日時 2024-12-30 17:01:10
合計ジャッジ時間 12,247 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 181 ms
34,436 KB
testcase_01 AC 183 ms
34,432 KB
testcase_02 AC 207 ms
35,580 KB
testcase_03 WA -
testcase_04 AC 184 ms
34,432 KB
testcase_05 AC 185 ms
34,560 KB
testcase_06 AC 184 ms
34,508 KB
testcase_07 AC 184 ms
34,432 KB
testcase_08 AC 186 ms
34,432 KB
testcase_09 AC 185 ms
34,432 KB
testcase_10 AC 185 ms
34,432 KB
testcase_11 AC 183 ms
34,432 KB
testcase_12 AC 207 ms
35,312 KB
testcase_13 AC 202 ms
35,456 KB
testcase_14 AC 205 ms
35,328 KB
testcase_15 AC 209 ms
35,456 KB
testcase_16 AC 208 ms
35,504 KB
testcase_17 AC 204 ms
35,712 KB
testcase_18 AC 196 ms
35,072 KB
testcase_19 AC 203 ms
35,200 KB
testcase_20 AC 193 ms
34,944 KB
testcase_21 AC 202 ms
35,456 KB
testcase_22 AC 223 ms
35,596 KB
testcase_23 AC 216 ms
35,584 KB
testcase_24 AC 215 ms
35,380 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma GCC target("avx2")
#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include <atcoder/all>
#include <iostream> // cout, endl, cin
#include <string> // string, to_string, stoi
#include <vector> // vector
#include <algorithm> // min, max, swap, sort, reverse, lower_bound, upper_bound
#include <utility> // pair, make_pair
#include <tuple> // tuple, make_tuple
#include <cstdint> // int64_t, int*_t
#include <cstdio> // printf
#include <map> // map
#include <queue> // queue, priority_queue
#include <set> // set
#include <stack> // stack
#include <deque> // deque #include <unordered_map> // unordered_map #include <unordered_set> // unordered_set #include <bitset> // bitset
#include <cctype> // isupper, islower, isdigit, toupper, tolower
#include <math.h>
#include <iomanip>
#include <functional>
using namespace std;  
using namespace atcoder;
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define repi(i, a, b) for (int i = (int)(a); i < (int)(b); i++)
typedef long long ll;
typedef unsigned long long ull;
const ll inf=1e18;  
using graph = vector<vector<int> > ;
using P= pair<ll,ll>;  
using vi=vector<int>;
using vvi=vector<vi>;
using vll=vector<ll>; 
using vvll=vector<vll>;
using vp=vector<P>;
using vvp=vector<vp>;
using vd=vector<double>;
using vvd =vector<vd>;
//string T="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
//string S="abcdefghijklmnopqrstuvwxyz";
//g++ main.cpp -std=c++17 -I .  
//cout <<setprecision(20);
//cout << fixed << setprecision(10);
//cin.tie(0); ios::sync_with_stdio(false);
const double PI = acos(-1);
int vx[]={0,1,0,-1,-1,1,1,-1},vy[]={1,0,-1,0,1,1,-1,-1};
void putsYes(bool f){cout << (f?"Yes":"No") << endl;}
void putsYES(bool f){cout << (f?"YES":"NO") << endl;}
void putsFirst(bool f){cout << (f?"First":"Second") << endl;}
void debug(int test){cout << "TEST" << " " << test << endl;}
ll pow_pow(ll x,ll n,ll mod){
    if(n==0) return 1; 
    x%=mod;
    ll res=pow_pow(x*x%mod,n/2,mod);
    if(n&1)res=res*x%mod;
    return res;
}
ll gcd(ll x,ll y){
    if(y==0)return x;
    return gcd(y,x%y);
}
 
ll lcm(ll x,ll y){
    return ll(x/gcd(x,y))*y;
}
template<class T> bool chmin(T& a, T b) {
    if (a > b) {
        a = b;
        return true;
    }
    else return false;
}
template<class T> bool chmax(T& a, T b) {
    if (a < b) {
        a = b;
        return true;
    }
    else return false;
}
// https://youtu.be/L8grWxBlIZ4?t=9858
// https://youtu.be/ERZuLAxZffQ?t=4807 : optimize
// https://youtu.be/8uowVvQ_-Mo?t=1329 : division
ll mod =998244353;
//ll mod =1e9+7;
struct mint {
  ll x; // typedef long long ll;
  mint(ll x=0):x((x%mod+mod)%mod){}
  mint operator-() const { return mint(-x);}
  mint& operator+=(const mint a) {
    if ((x += a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator-=(const mint a) {
    if ((x += mod-a.x) >= mod) x -= mod;
    return *this;
  }
  mint& operator*=(const mint a) { (x *= a.x) %= mod; return *this;}
  mint operator+(const mint a) const { return mint(*this) += a;}
  mint operator-(const mint a) const { return mint(*this) -= a;}
  mint operator*(const mint a) const { return mint(*this) *= a;}
  mint pow(ll t) const {
    if (!t) return 1;
    mint a = pow(t>>1);
    a *= a;
    if (t&1) a *= *this;
    return a;
  }
 
  // for prime mod
  mint inv() const { return pow(mod-2);}
  mint& operator/=(const mint a) { return *this *= a.inv();}
  mint operator/(const mint a) const { return mint(*this) /= a;}
};
istream& operator>>(istream& is, const mint& a) { return is >> a.x;}
ostream& operator<<(ostream& os, const mint& a) { return os << a.x;}
// combination mod prime
// https://www.youtube.com/watch?v=8uowVvQ_-Mo&feature=youtu.be&t=1619
struct combination {
  vector<mint> fact, ifact;
  combination(int n):fact(n+1),ifact(n+1) {
    //assert(n < mod);
    fact[0] = 1;
    for (int i = 1; i <= n; ++i) fact[i] = fact[i-1]*i;
    ifact[n] = fact[n].inv();
    for (int i = n; i >= 1; --i) ifact[i-1] = ifact[i]*i;
  }
  mint operator()(int n, int k) {
    if (k < 0 || k > n) return 0;
    if (n<0) return 0;
    return fact[n]*ifact[k]*ifact[n-k];
  } mint p(int n, int k) { return fact[n]*ifact[n-k]; } } c(2000000); 
using vm=vector<mint> ;
using vvm=vector<vm> ;
struct edge{
  int to; ll cost;
  edge(int to,ll cost) : to(to),cost(cost){}
};
using ve=vector<edge>;
using vve=vector<ve>;
struct Compress{
   vll a;
   map<ll,ll> d,d2;
   int cnt;
   Compress() :cnt(0) {}
   void add(ll x){a.push_back(x);}
   void init(){
     set<ll>s(a.begin(),a.end());
     for(auto y:s)d[y]=cnt++;
     for(auto&y:a)y=d[y];
     for(auto u:d)d2[u.second]=u.first;
   }
   ll to(ll x){return d[x];} //変換先
   ll from(ll x){return d2[x];}//逆引き
   int size(){return cnt;}
};
int isqrt(ll n) {
    return sqrtl(n);
}
ll prime_pi(const ll N) {
    if (N <= 1) return 0;
    if (N == 2) return 1;
    const int v = isqrt(N);
    int s = (v + 1) / 2;
    vector<int> smalls(s);
    for (int i = 1; i < s; i++) smalls[i] = i;
    vector<int> roughs(s);
    for (int i = 0; i < s; i++) roughs[i] = 2 * i + 1;
    vector<ll> larges(s);
    for (int i = 0; i < s; i++) larges[i] = (N / (2 * i + 1) - 1) / 2;
    vector<bool> skip(v + 1);
    const auto divide = [](ll n, ll d) -> int { return (double)n / d;};
    const auto half = [](int n) -> int { return (n - 1) >> 1;};
    int pc = 0;
    for (int p = 3; p <= v; p += 2) if (!skip[p]) {
        int q = p * p;
        if ((ll)q * q > N) break;
        skip[p] = true;
        for (int i = q; i <= v; i += 2 * p) skip[i] = true;
        int ns = 0;
        for (int k = 0; k < s; k++) {
            int i = roughs[k];
            if (skip[i]) continue;
            ll d = (ll)i * p;
            larges[ns] = larges[k] - (d <= v ? larges[smalls[d >> 1] - pc] : smalls[half(divide(N, d))]) + pc;
            roughs[ns++] = i;
        }
        s = ns;
        for (int i = half(v), j = ((v / p) - 1) | 1; j >= p; j -= 2) {
            int c = smalls[j >> 1] - pc;
            for (int e = (j * p) >> 1; i >= e; i--) smalls[i] -= c;
        }
        pc++;
    }
    larges[0] += (ll)(s + 2 * (pc - 1)) * (s - 1) / 2;
    for (int k = 1; k < s; k++) larges[0] -= larges[k];
    for (int l = 1; l < s; l++) {
        ll q = roughs[l];
        ll M = N / q;
        int e = smalls[half(M / q)] - pc;
        if (e < l + 1) break;
        ll t = 0;
        for (int k = l + 1; k <= e; k++)
            t += smalls[half(divide(M, roughs[k]))];
        larges[0] += t - (ll)(e - l) * (pc + l - 1);
    }
    return larges[0] + 1;
}
vll anss;
void solve(int test){
  ll l,r; cin >> l >> r;
  ll ans=0;
  ans+=prime_pi(2*r-1);
  if(2*l+1-1>=1)ans-=prime_pi(2*l+1-1);
  ans+=prime_pi(r);
  if(l-1>=1)ans-=prime_pi(l-1);
  cout << ans << endl;
}
//g++ main.cpp -std=c++17 -I .
int main(){cin.tie(0);ios::sync_with_stdio(false);
  int t=1;//cin >> t;
  rep(test,t)solve(test);
  for(auto u:anss)cout << u << endl;
}
0