結果
問題 | No.1321 塗るめた |
ユーザー | vwxyz |
提出日時 | 2023-04-27 02:12:58 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 16,201 bytes |
コンパイル時間 | 398 ms |
コンパイル使用メモリ | 82,228 KB |
実行使用メモリ | 151,456 KB |
最終ジャッジ日時 | 2024-11-16 09:51:51 |
合計ジャッジ時間 | 48,465 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 47 ms
58,032 KB |
testcase_01 | AC | 183 ms
78,944 KB |
testcase_02 | AC | 50 ms
56,544 KB |
testcase_03 | AC | 47 ms
56,676 KB |
testcase_04 | AC | 47 ms
57,488 KB |
testcase_05 | AC | 47 ms
56,908 KB |
testcase_06 | AC | 46 ms
56,600 KB |
testcase_07 | AC | 63 ms
67,764 KB |
testcase_08 | AC | 72 ms
71,212 KB |
testcase_09 | AC | 75 ms
71,316 KB |
testcase_10 | AC | 46 ms
56,752 KB |
testcase_11 | AC | 76 ms
72,128 KB |
testcase_12 | AC | 961 ms
115,744 KB |
testcase_13 | AC | 1,690 ms
147,984 KB |
testcase_14 | AC | 882 ms
109,824 KB |
testcase_15 | AC | 921 ms
112,588 KB |
testcase_16 | AC | 970 ms
116,172 KB |
testcase_17 | AC | 180 ms
78,936 KB |
testcase_18 | AC | 1,738 ms
148,412 KB |
testcase_19 | AC | 541 ms
94,776 KB |
testcase_20 | AC | 897 ms
112,748 KB |
testcase_21 | AC | 1,703 ms
149,128 KB |
testcase_22 | AC | 1,746 ms
151,068 KB |
testcase_23 | AC | 1,747 ms
150,964 KB |
testcase_24 | AC | 1,743 ms
151,348 KB |
testcase_25 | AC | 1,737 ms
151,076 KB |
testcase_26 | AC | 1,744 ms
151,220 KB |
testcase_27 | AC | 1,751 ms
151,352 KB |
testcase_28 | AC | 1,739 ms
151,352 KB |
testcase_29 | AC | 1,749 ms
151,456 KB |
testcase_30 | AC | 1,734 ms
151,220 KB |
testcase_31 | AC | 1,750 ms
151,344 KB |
testcase_32 | AC | 967 ms
115,736 KB |
testcase_33 | AC | 889 ms
112,104 KB |
testcase_34 | AC | 949 ms
116,128 KB |
testcase_35 | AC | 884 ms
112,116 KB |
testcase_36 | TLE | - |
testcase_37 | AC | 1,744 ms
151,072 KB |
testcase_38 | AC | 1,746 ms
151,096 KB |
testcase_39 | AC | 1,748 ms
151,220 KB |
testcase_40 | AC | 1,748 ms
151,220 KB |
testcase_41 | AC | 1,744 ms
151,004 KB |
testcase_42 | AC | 45 ms
55,936 KB |
testcase_43 | AC | 955 ms
115,872 KB |
testcase_44 | AC | 895 ms
112,316 KB |
testcase_45 | AC | 956 ms
115,740 KB |
testcase_46 | AC | 333 ms
84,536 KB |
ソースコード
import math import sys readline=sys.stdin.readline mod = 998244353 class FPS: sum_e = ( 911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601, 842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497) sum_ie = ( 86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960, 354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951) mod = 998244353 Func = [0] def __init__(self, L): self.Func = [x % self.mod for x in L] def butterfly(self, a): n = len(a) h = (n - 1).bit_length() for ph in range(1, h + 1): w = 1 << (ph - 1) p = 1 << (h - ph) now = 1 for s in range(w): offset = s << (h - ph + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] * now r %= self.mod a[i + offset] = l + r a[i + offset] %= self.mod a[i + offset + p] = l - r a[i + offset + p] %= self.mod now *= self.sum_e[(~s & -~s).bit_length() - 1] now %= self.mod return a def butterfly_inv(self, a): n = len(a) h = (n - 1).bit_length() for ph in range(h, 0, -1): w = 1 << (ph - 1) p = 1 << (h - ph) inow = 1 for s in range(w): offset = s << (h - ph + 1) for i in range(p): l = a[i + offset] r = a[i + offset + p] a[i + offset] = l + r a[i + offset] %= self.mod a[i + offset + p] = (l - r) * inow a[i + offset + p] %= self.mod inow *= self.sum_ie[(~s & -~s).bit_length() - 1] inow %= self.mod return a def __mul__(self, other): if type(other) == int: ret = [(x * other) % self.mod for x in self.Func] return FPS(ret) a = self.Func b = other.Func n = len(a); m = len(b) if not (a) or not (b): return FPS([]) if min(n, m) <= 40: if n < m: n, m = m, n a, b = b, a res = [0] * (n + m - 1) for i in range(n): for j in range(m): res[i + j] += a[i] * b[j] res[i + j] %= self.mod return FPS(res) z = 1 << ((n + m - 2).bit_length()) a = a + [0] * (z - n) b = b + [0] * (z - m) a = self.butterfly(a) b = self.butterfly(b) c = [0] * z for i in range(z): c[i] = (a[i] * b[i]) % self.mod self.butterfly_inv(c) iz = pow(z, self.mod - 2, self.mod) for i in range(n + m - 1): c[i] = (c[i] * iz) % self.mod return FPS(c[:n + m - 1]) def __imul__(self, other): self = self * other return self def __add__(self, other): res = [0 for i in range(max(len(self.Func), len(other.Func)))] for i, x in enumerate(self.Func): res[i] += x res[i] %= self.mod for i, x in enumerate(other.Func): res[i] += x res[i] %= self.mod return FPS(res) def __iadd__(self, other): self = (self + other) return self def __sub__(self, other): res = [0 for i in range(max(len(self.Func), len(other.Func)))] for i, x in enumerate(self.Func): res[i] += x res[i] %= self.mod for i, x in enumerate(other.Func): res[i] -= x res[i] %= self.mod return FPS(res) def __isub__(self, other): self = self - other return self def inv(self, d=-1): n = len(self.Func) assert n != 0 and self.Func[0] != 0 if d == -1: d = n assert d > 0 res = [pow(self.Func[0], self.mod - 2, self.mod)] while (len(res) < d): m = len(res) f = [self.Func[i] for i in range(min(n, 2 * m))] r = res[:] if len(f) < 2 * m: f += [0] * (2 * m - len(f)) elif len(f) > 2 * m: f = f[:2 * m] if len(r) < 2 * m: r += [0] * (2 * m - len(r)) elif len(r) > 2 * m: r = r[:2 * m] f = self.butterfly(f) r = self.butterfly(r) for i in range(2 * m): f[i] *= r[i] f[i] %= self.mod f = self.butterfly_inv(f) f = f[m:] if len(f) < 2 * m: f += [0] * (2 * m - len(f)) elif len(f) > 2 * m: f = f[:2 * m] f = self.butterfly(f) for i in range(2 * m): f[i] *= r[i] f[i] %= self.mod f = self.butterfly_inv(f) iz = pow(2 * m, self.mod - 2, self.mod) iz *= -iz iz %= self.mod for i in range(m): f[i] *= iz f[i] %= self.mod res += f[:m] return FPS(res[:d]) def __truediv__(self, other): if type(other) == int: invother = pow(other, self.mod - 2, self.mod) ret = [(x * invother) % self.mod for x in self.Func] return FPS(ret) assert (other.Func[0] != 0) return self * (other.inv()) def __itruediv__(self, other): self = self / other return self def __lshift__(self, d): n = len(self.Func) self.Func = [0] * d + self.Func return FPS(self.Func[:n]) def __ilshift__(self, d): self = self << d return self def __rshift__(self, d): n = len(self.Func) self.Func = self.Func[min(n, d):] self.Func += [0] * (n - len(self.Func)) return FPS(self.Func) def __irshift__(self, d): self = self >> d return self def __str__(self): return f'FPS({self.Func})' def diff(self): n = len(self.Func) ret = [0 for i in range(max(0, n - 1))] for i in range(1, n): ret[i - 1] = (self.Func[i] * i) % self.mod return FPS(ret) def integral(self): n = len(self.Func) ret = [0 for i in range(n + 1)] for i in range(n): ret[i + 1] = self.Func[i] * pow(i + 1, self.mod - 2, self.mod) % self.mod return FPS(ret) def log(self, deg=-1): assert self.Func[0] == 1 n = len(self.Func) if deg == -1: deg = n return (self.diff() * self.inv()).integral() def mod_sqrt(self, a): p = self.mod assert 0 <= a and a < p if a < 2: return a if pow(a, (p - 1) // 2, p) != 1: return -1 b = 1; one = 1 while (pow(b, (p - 1) >> 1, p) == 1): b += one m = p - 1; e = 0 while (m % 2 == 0): m >>= 1 e += 1 x = pow(a, (m - 1) >> 1, p) y = (a * x * x) % p x *= a; x %= p z = pow(b, m, p) while (y != 1): j = 0 t = y while (t != one): j += 1 t *= t t %= p z = pow(z, 1 << (e - j - 1), p) x *= z x %= p z *= z z %= p y *= z y %= p e = j return x def sqrt(self, deg=-1): n = len(self.Func) if deg == -1: deg = n if n == 0: return FPS([0 for i in range(deg)]) if self.Func[0] == 0: for i in range(1, n): if self.Func[i] != 0: if i & 1: return FPS([]) if deg - i // 2 <= 0: break ret = (self >> i).sqrt(deg - i // 2) if len(ret.Func) == 0: return FPS([]) ret = ret << (i // 2) if len(ret.Func) < deg: ret.Func += [0] * (deg - len(ret.Func)) return ret return FPS([0] * deg) sqr = self.mod_sqrt(self.Func[0]) if sqr == -1: return FPS([]) assert sqr * sqr % self.mod == self.Func[0] ret = FPS([sqr]) inv2 = (self.mod + 1) // 2 i = 1 while (i < deg): ret = (ret + FPS(self.Func[:i << 1]) * ret.inv(i << 1)) * inv2 i <<= 1 return FPS(ret.Func[:deg]) def resize(self, deg): if len(self.Func) < deg: return FPS(self.Func + [0] * (deg - len(self.Func))) elif len(self.Func) > deg: return FPS(self.Func[:deg]) else: return self def exp(self, deg=-1): n = len(self.Func) assert n > 0 and self.Func[0] == 0 if deg == -1: deg = n assert deg >= 0 g = [1] g_fft = [1, 1] self.Func[0] = 1 self.resize(deg) h_drv = self.diff() m = 2 while (m < deg): f_fft = self.Func[:m] + [0] * m self.butterfly(f_fft) # step 2.a _g = [f_fft[i] * g_fft[i] % self.mod for i in range(m)] self.butterfly_inv(_g) _g = _g[m // 2:m] + [0] * (m // 2) self.butterfly(_g) for i in range(m): _g[i] *= g_fft[i] _g[i] %= self.mod self.butterfly_inv(_g) tmp = pow(-m * m, self.mod - 2, self.mod) for i in range(m): _g[i] *= tmp _g[i] %= self.mod g += _g[:m // 2] # step 2.b--2.d t = FPS(self.Func[:m]).diff() r = h_drv.Func[:m - 1] + [0] self.butterfly(r) for i in range(m): r[i] *= f_fft[i] r[i] %= self.mod self.butterfly_inv(r) tmp = pow(-m, self.mod - 2, self.mod) for i in range(m): r[i] *= tmp r[i] %= self.mod t = (t + FPS(r)).Func t = [t[-1]] + t t.pop() # step 2.e if (2 * m < deg): if len(t) < 2 * m: t += [0] * (2 * m - len(t)) elif len(t) > 2 * m: t = t[:2 * m] self.butterfly(t) g_fft = g[:] if len(g_fft) < 2 * m: g_fft += [0] * (2 * m - len(g_fft)) elif len(g_fft) > 2 * m: g_fft = g_fft[:2 * m] self.butterfly(g_fft) for i in range(2 * m): t[i] *= g_fft[i] t[i] %= self.mod self.butterfly_inv(t) tmp = pow(2 * m, self.mod - 2, self.mod) t = t[:m] for i in range(m): t[i] *= tmp t[i] %= self.mod else: g1 = g[m // 2:] s1 = t[m // 2:] t = t[:m // 2] g1 += [0] * (m - len(g1)) s1 += [0] * (m - len(s1)) t += [0] * (m - len(t)) self.butterfly(g1) self.butterfly(t) self.butterfly(s1) for i in range(m): s1[i] = (g_fft[i] * s1[i] + g1[i] * t[i]) % self.mod for i in range(m): t[i] *= g_fft[i] t[i] %= self.mod self.butterfly_inv(t) self.butterfly_inv(s1) for i in range(m // 2): t[i + m // 2] += s1[i] t[i + m // 2] %= self.mod tmp = pow(m, self.mod - 2, self.mod) for i in range(m): t[i] *= tmp t[i] %= self.mod # step 2.f v = self.Func[m:min(deg, 2 * m)] + [0] * (2 * m - min(deg, 2 * m)) t = [0] * (m - 1) + t t = FPS(t).integral().Func for i in range(m): v[i] -= t[m + i] v[i] %= self.mod # step 2.g if len(v) < 2 * m: v += [0] * (2 * m - len(v)) else: v = v[:2 * m] self.butterfly(v) for i in range(2 * m): v[i] *= f_fft[i] v[i] %= self.mod self.butterfly_inv(v) v = v[:m] tmp = pow(2 * m, self.mod - 2, self.mod) for i in range(m): v[i] *= tmp v[i] %= self.mod # step 2.h for i in range(min(deg - m, m)): self.Func[m + i] = v[i] m *= 2 return self def powfps(self, k, deg=-1): a = self.Func[:] n = len(self.Func) l = 0 while (l < len(a) and not a[l]): l += 1 if l * k >= n: return FPS([0] * n) ic = pow(a[l], self.mod - 2, self.mod) pc = pow(a[l], k, self.mod) a = FPS([(a[i] * ic) % self.mod for i in range(l, len(a))]).log() a *= k a = a.exp() a *= pc a = [0] * (l * k) + a.Func[:n - l * k] return FPS(a) def Extended_Euclid(n,m): stack=[] while m: stack.append((n,m)) n,m=m,n%m if n>=0: x,y=1,0 else: x,y=-1,0 for i in range(len(stack)-1,-1,-1): n,m=stack[i] x,y=y,x-(n//m)*y return x,y class MOD: def __init__(self,p,e=None): self.p=p self.e=e if self.e==None: self.mod=self.p else: self.mod=self.p**self.e def Pow(self,a,n): a%=self.mod if n>=0: return pow(a,n,self.mod) else: assert math.gcd(a,self.mod)==1 x=Extended_Euclid(a,self.mod)[0] return pow(x,-n,self.mod) def Build_Fact(self,N): assert N>=0 self.factorial=[1] if self.e==None: for i in range(1,N+1): self.factorial.append(self.factorial[-1]*i%self.mod) else: self.cnt=[0]*(N+1) for i in range(1,N+1): self.cnt[i]=self.cnt[i-1] ii=i while ii%self.p==0: ii//=self.p self.cnt[i]+=1 self.factorial.append(self.factorial[-1]*ii%self.mod) self.factorial_inve=[None]*(N+1) self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1) for i in range(N-1,-1,-1): ii=i+1 while ii%self.p==0: ii//=self.p self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod def Fact(self,N): if N<0: return 0 retu=self.factorial[N] if self.e!=None and self.cnt[N]: retu*=pow(self.p,self.cnt[N],self.mod)%self.mod retu%=self.mod return retu def Fact_Inve(self,N): if self.e!=None and self.cnt[N]: return None return self.factorial_inve[N] def Comb(self,N,K,divisible_count=False): if K<0 or K>N: return 0 retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod if self.e!=None: cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K] if divisible_count: return retu,cnt else: retu*=pow(self.p,cnt,self.mod) retu%=self.mod return retu N,M,K=map(int,readline().split()) mod=998244353 MD=MOD(mod) MD.Build_Fact(N) P=[None]*(N+1) P[0]=0 for i in range(1,N+1): P[i]=MD.Fact_Inve(i) P=FPS(P) P=P.powfps(K,N+1) ans=0 for n in range(N+1): ans+=P.Func[n]*MD.Pow(M,N-n)%mod*MD.Fact_Inve(N-n)%mod ans*=MD.Comb(M,K)*MD.Fact(N)%mod ans%=mod print(ans)