結果
問題 | No.2286 Join Hands |
ユーザー | 👑 hos.lyric |
提出日時 | 2023-04-28 22:59:57 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
TLE
|
実行時間 | - |
コード長 | 6,194 bytes |
コンパイル時間 | 1,262 ms |
コンパイル使用メモリ | 118,540 KB |
実行使用メモリ | 15,808 KB |
最終ジャッジ日時 | 2024-11-17 21:57:24 |
合計ジャッジ時間 | 91,274 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
10,496 KB |
testcase_01 | AC | 2 ms
10,168 KB |
testcase_02 | AC | 1 ms
10,496 KB |
testcase_03 | AC | 2 ms
10,440 KB |
testcase_04 | AC | 2 ms
10,496 KB |
testcase_05 | AC | 2 ms
10,440 KB |
testcase_06 | AC | 1 ms
10,496 KB |
testcase_07 | AC | 2 ms
10,168 KB |
testcase_08 | AC | 715 ms
10,496 KB |
testcase_09 | AC | 940 ms
10,448 KB |
testcase_10 | TLE | - |
testcase_11 | TLE | - |
testcase_12 | TLE | - |
testcase_13 | TLE | - |
testcase_14 | TLE | - |
testcase_15 | TLE | - |
testcase_16 | TLE | - |
testcase_17 | AC | 604 ms
10,560 KB |
testcase_18 | TLE | - |
testcase_19 | TLE | - |
testcase_20 | TLE | - |
testcase_21 | TLE | - |
testcase_22 | TLE | - |
testcase_23 | TLE | - |
testcase_24 | TLE | - |
testcase_25 | TLE | - |
testcase_26 | TLE | - |
testcase_27 | TLE | - |
testcase_28 | AC | 2 ms
10,496 KB |
testcase_29 | AC | 2 ms
10,964 KB |
testcase_30 | AC | 2 ms
10,496 KB |
testcase_31 | AC | 2 ms
10,840 KB |
testcase_32 | AC | 2 ms
10,496 KB |
testcase_33 | AC | 1 ms
10,840 KB |
testcase_34 | AC | 2 ms
10,496 KB |
testcase_35 | AC | 2 ms
10,444 KB |
testcase_36 | AC | 1 ms
10,496 KB |
testcase_37 | AC | 2 ms
10,840 KB |
testcase_38 | AC | 2 ms
10,496 KB |
testcase_39 | AC | 2 ms
10,712 KB |
testcase_40 | AC | 2 ms
10,496 KB |
testcase_41 | AC | 2 ms
10,844 KB |
testcase_42 | AC | 2 ms
10,496 KB |
testcase_43 | AC | 2 ms
10,844 KB |
testcase_44 | AC | 2 ms
10,496 KB |
testcase_45 | AC | 1 ms
5,248 KB |
testcase_46 | AC | 1 ms
5,248 KB |
testcase_47 | TLE | - |
testcase_48 | TLE | - |
testcase_49 | TLE | - |
testcase_50 | TLE | - |
testcase_51 | AC | 1,944 ms
5,248 KB |
testcase_52 | AC | 1,047 ms
5,248 KB |
testcase_53 | TLE | - |
testcase_54 | AC | 897 ms
5,248 KB |
testcase_55 | TLE | - |
testcase_56 | TLE | - |
testcase_57 | TLE | - |
testcase_58 | TLE | - |
testcase_59 | TLE | - |
testcase_60 | TLE | - |
ソースコード
#include <cassert> #include <cmath> #include <cstdint> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <bitset> #include <complex> #include <deque> #include <functional> #include <iostream> #include <limits> #include <map> #include <numeric> #include <queue> #include <set> #include <sstream> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> using namespace std; using Int = long long; template <class T1, class T2> ostream &operator<<(ostream &os, const pair<T1, T2> &a) { return os << "(" << a.first << ", " << a.second << ")"; }; template <class T> ostream &operator<<(ostream &os, const vector<T> &as) { const int sz = as.size(); os << "["; for (int i = 0; i < sz; ++i) { if (i >= 256) { os << ", ..."; break; } if (i > 0) { os << ", "; } os << as[i]; } return os << "]"; } template <class T> void pv(T a, T b) { for (T i = a; i != b; ++i) cerr << *i << " "; cerr << endl; } template <class T> bool chmin(T &t, const T &f) { if (t > f) { t = f; return true; } return false; } template <class T> bool chmax(T &t, const T &f) { if (t < f) { t = f; return true; } return false; } // Minimum cost flow by successive shortest paths. // Assumes that there exists no negative-cost cycle. // TODO: Check the range of intermediate values. template <class Flow, class Cost> struct MinCostFlow { // Watch out when using types other than int and long long. static constexpr Flow FLOW_EPS = 1e-10L; static constexpr Flow FLOW_INF = std::numeric_limits<Flow>::max(); static constexpr Cost COST_EPS = 1e-10L; static constexpr Cost COST_INF = std::numeric_limits<Cost>::max(); int n, m; vector<int> ptr, nxt, zu; vector<Flow> capa; vector<Cost> cost; explicit MinCostFlow(int n_) : n(n_), m(0), ptr(n_, -1) {} void ae(int u, int v, Flow w, Cost c) { assert(0 <= u); assert(u < n); assert(0 <= v); assert(v < n); assert(0 <= w); nxt.push_back(ptr[u]); zu.push_back(v); capa.push_back(w); cost.push_back( c); ptr[u] = m++; nxt.push_back(ptr[v]); zu.push_back(u); capa.push_back(0); cost.push_back(-c); ptr[v] = m++; } vector<Cost> pot, dist; vector<bool> vis; vector<int> pari; // cost slopes[j] per flow when flows[j] <= flow <= flows[j + 1] vector<Flow> flows; vector<Cost> slopes; // Finds a shortest path from s to t in the residual graph. // O((n + m) log m) time. // Assumes that the members above are set. // The distance to a vertex might not be determined if it is >= dist[t]. // You can pass t = -1 to find a shortest path to each vertex. void shortest(int s, int t) { using Entry = pair<Cost, int>; priority_queue<Entry, vector<Entry>, std::greater<Entry>> que; for (int u = 0; u < n; ++u) { dist[u] = COST_INF; vis[u] = false; } for (que.emplace(dist[s] = 0, s); !que.empty(); ) { const Cost c = que.top().first; const int u = que.top().second; que.pop(); if (vis[u]) continue; vis[u] = true; if (u == t) return; for (int i = ptr[u]; ~i; i = nxt[i]) if (capa[i] > FLOW_EPS) { const int v = zu[i]; if (!vis[v]) { const Cost cc = c + cost[i] + pot[u] - pot[v]; if (dist[v] > cc) { que.emplace(dist[v] = cc, v); pari[v] = i; } } } } } // Finds a minimum cost flow from s to t of amount min{(max flow), limFlow}. // Bellman-Ford takes O(n m) time, or O(m) time if there is no negative-cost // edge, or cannot stop if there exists a negative-cost cycle. // min{(max flow), limFlow} shortest paths if Flow is an integral type. pair<Flow, Cost> run(int s, int t, Flow limFlow = FLOW_INF) { assert(0 <= s); assert(s < n); assert(0 <= t); assert(t < n); assert(s != t); assert(0 <= limFlow); pot.assign(n, 0); for (; ; ) { bool upd = false; for (int i = 0; i < m; ++i) if (capa[i] > FLOW_EPS) { const int u = zu[i ^ 1], v = zu[i]; const Cost cc = pot[u] + cost[i]; if (pot[v] > cc + COST_EPS) { pot[v] = cc; upd = true; } } if (!upd) break; } dist.resize(n); vis.resize(n); pari.resize(n); Flow flow = 0; Cost cost = 0; flows.clear(); flows.push_back(0); slopes.clear(); for (; flow < limFlow; ) { shortest(s, t); if (!vis[t]) break; for (int u = 0; u < n; ++u) pot[u] += min(dist[u], dist[t]); Flow f = limFlow - flow; for (int v = t; v != s; ) { const int i = pari[v]; if (f > capa[i]) { f = capa[i]; } v = zu[i ^ 1]; } for (int v = t; v != s; ) { const int i = pari[v]; capa[i] -= f; capa[i ^ 1] += f; v = zu[i ^ 1]; } flow += f; cost += f * (pot[t] - pot[s]); flows.push_back(flow); slopes.push_back(pot[t] - pot[s]); } return make_pair(flow, cost); } }; //////////////////////////////////////////////////////////////////////////////// int N, M; vector<int> A, B; int main() { for (; ~scanf("%d%d", &N, &M); ) { A.resize(M); B.resize(M); for (int i = 0; i < M; ++i) { scanf("%d%d", &A[i], &B[i]); --A[i]; --B[i]; } MinCostFlow<int, int> mcf(2 + N + N + N + N); auto out = [&](int u) -> int { return 2 + u; }; auto in = [&](int u) -> int { return 2 + N + u; }; auto toL = [&](int u) -> int { return 2 + N + N + u; }; auto toR = [&](int u) -> int { return 2 + N + N + N + u; }; for (int u = 0; u < N; ++u) { mcf.ae(0, out(u), 1, 0); mcf.ae(in(u), 1, 1, 0); mcf.ae(toL(u), in(u), 1, 0); mcf.ae(toR(u), in(u), 1, 0); // discard if (u - 1 >= 0) mcf.ae(out(u), toL(u - 1), 1, 0); if (u + 1 < N) mcf.ae(out(u), toR(u + 1), 1, 0); } for (int u = 0; u < N - 1; ++u) { mcf.ae(toL(u + 1), toL(u), N, 0); mcf.ae(toR(u), toR(u + 1), N, 0); } // use for (int i = 0; i < M; ++i) { mcf.ae(out(A[i]), in(B[i]), 1, -1); mcf.ae(out(B[i]), in(A[i]), 1, -1); } const auto res = mcf.run(0, 1, N); // cerr<<"res = "<<res<<endl; assert(res.first == N); const int ans = -res.second; printf("%d\n", 2 * ans - N); } return 0; }