結果

問題 No.2004 Incremental Coins
ユーザー heno239
提出日時 2023-04-29 18:49:44
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,574 ms / 2,000 ms
コード長 10,530 bytes
コンパイル時間 2,646 ms
コンパイル使用メモリ 183,240 KB
最終ジャッジ日時 2025-02-12 16:07:14
ジャッジサーバーID
(参考情報)
judge4 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#pragma GCC optimize("O3")
#pragma GCC optimize("unroll-loops")
#include<iostream>
#include<string>
#include<cstdio>
#include<vector>
#include<cmath>
#include<algorithm>
#include<functional>
#include<iomanip>
#include<queue>
#include<ciso646>
#include<random>
#include<map>
#include<set>
#include<bitset>
#include<stack>
#include<unordered_map>
#include<unordered_set>
#include<utility>
#include<cassert>
#include<complex>
#include<numeric>
#include<array>
#include<chrono>
using namespace std;
//#define int long long
typedef long long ll;
typedef unsigned long long ul;
typedef unsigned int ui;
constexpr ll mod = 998244353;
//constexpr ll mod = 1000000007;
const ll INF = mod * mod;
typedef pair<int, int>P;
#define rep(i,n) for(int i=0;i<n;i++)
#define per(i,n) for(int i=n-1;i>=0;i--)
#define Rep(i,sta,n) for(int i=sta;i<n;i++)
#define rep1(i,n) for(int i=1;i<=n;i++)
#define per1(i,n) for(int i=n;i>=1;i--)
#define Rep1(i,sta,n) for(int i=sta;i<=n;i++)
#define all(v) (v).begin(),(v).end()
typedef pair<ll, ll> LP;
template<typename T>
void chmin(T& a, T b) {
a = min(a, b);
}
template<typename T>
void chmax(T& a, T b) {
a = max(a, b);
}
template<typename T>
void cinarray(vector<T>& v) {
rep(i, v.size())cin >> v[i];
}
template<typename T>
void coutarray(vector<T>& v) {
rep(i, v.size()) {
if (i > 0)cout << " "; cout << v[i];
}
cout << "\n";
}
ll mod_pow(ll x, ll n, ll m = mod) {
if (n < 0) {
ll res = mod_pow(x, -n, m);
return mod_pow(res, m - 2, m);
}
if (abs(x) >= m)x %= m;
if (x < 0)x += m;
//if (x == 0)return 0;
ll res = 1;
while (n) {
if (n & 1)res = res * x % m;
x = x * x % m; n >>= 1;
}
return res;
}
struct modint {
int n;
modint() :n(0) { ; }
modint(ll m) {
if (m < 0 || mod <= m) {
m %= mod; if (m < 0)m += mod;
}
n = m;
}
operator int() { return n; }
};
bool operator==(modint a, modint b) { return a.n == b.n; }
bool operator<(modint a, modint b) { return a.n < b.n; }
modint operator+=(modint& a, modint b) { a.n += b.n; if (a.n >= mod)a.n -= mod; return a; }
modint operator-=(modint& a, modint b) { a.n -= b.n; if (a.n < 0)a.n += mod; return a; }
modint operator*=(modint& a, modint b) { a.n = ((ll)a.n * b.n) % mod; return a; }
modint operator+(modint a, modint b) { return a += b; }
modint operator-(modint a, modint b) { return a -= b; }
modint operator*(modint a, modint b) { return a *= b; }
modint operator^(modint a, ll n) {
if (n == 0)return modint(1);
modint res = (a * a) ^ (n / 2);
if (n % 2)res = res * a;
return res;
}
ll inv(ll a, ll p) {
return (a == 1 ? 1 : (1 - p * inv(p % a, a)) / a + p);
}
modint operator/(modint a, modint b) { return a * modint(inv(b, mod)); }
modint operator/=(modint& a, modint b) { a = a / b; return a; }
const int max_n = 1 << 20;
modint fact[max_n], factinv[max_n];
void init_f() {
fact[0] = modint(1);
for (int i = 0; i < max_n - 1; i++) {
fact[i + 1] = fact[i] * modint(i + 1);
}
factinv[max_n - 1] = modint(1) / fact[max_n - 1];
for (int i = max_n - 2; i >= 0; i--) {
factinv[i] = factinv[i + 1] * modint(i + 1);
}
}
modint comb(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[b] * factinv[a - b];
}
modint combP(int a, int b) {
if (a < 0 || b < 0 || a < b)return 0;
return fact[a] * factinv[a - b];
}
ll gcd(ll a, ll b) {
a = abs(a); b = abs(b);
if (a < b)swap(a, b);
while (b) {
ll r = a % b; a = b; b = r;
}
return a;
}
typedef long double ld;
typedef pair<ld, ld> LDP;
const ld eps = 1e-12;
const ld pi = acosl(-1.0);
template<typename T>
void addv(vector<T>& v, int loc, T val) {
if (loc >= v.size())v.resize(loc + 1, 0);
v[loc] += val;
}
/*const int mn = 100005;
bool isp[mn];
vector<int> ps;
void init() {
fill(isp + 2, isp + mn, true);
for (int i = 2; i < mn; i++) {
if (!isp[i])continue;
ps.push_back(i);
for (int j = 2 * i; j < mn; j += i) {
isp[j] = false;
}
}
}*/
//[,val)
template<typename T>
auto prev_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
if (res == st.begin())return st.end();
res--; return res;
}
//[val,)
template<typename T>
auto next_itr(set<T>& st, T val) {
auto res = st.lower_bound(val);
return res;
}
using mP = pair<modint, modint>;
mP operator+(mP a, mP b) {
return { a.first + b.first,a.second + b.second };
}
mP operator+=(mP& a, mP b) {
a = a + b; return a;
}
mP operator-(mP a, mP b) {
return { a.first - b.first,a.second - b.second };
}
mP operator-=(mP& a, mP b) {
a = a - b; return a;
}
mt19937 mt(time(0));
const string drul = "DRUL";
string senw = "SENW";
//DRUL,or SENW
int dx[4] = { 1,0,-1,0 };
int dy[4] = { 0,1,0,-1 };
//-----------------------------------------
int get_premitive_root() {
int primitive_root = 0;
if (!primitive_root) {
primitive_root = [&]() {
set<int> fac;
int v = mod - 1;
for (ll i = 2; i * i <= v; i++) while (v % i == 0) fac.insert(i), v /= i;
if (v > 1) fac.insert(v);
for (int g = 1; g < mod; g++) {
bool ok = true;
for (auto i : fac) if (mod_pow(g, (mod - 1) / i) == 1) { ok = false; break; }
if (ok) return g;
}
return -1;
}();
}
return primitive_root;
}
const int proot = get_premitive_root();
int bsf(int x) {
int res = 0;
while (!(x & 1)) {
res++; x >>= 1;
}
return res;
}
int ceil_pow2(int n) {
int x = 0;
while ((1 << x) < n) x++;
return x;
}
using poly = vector<modint>;
void butterfly(poly& a) {
int n = int(a.size());
int g = proot;
int h = ceil_pow2(n);
static bool first = true;
static modint sum_e[30]; // sum_e[i] = ies[0] * ... * ies[i - 1] * es[i]
if (first) {
first = false;
modint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mod - 1);
modint e = mod_pow(g, (mod - 1) >> cnt2);
modint ie = (modint)1 / e;
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
modint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_e[i] = es[i] * now;
now *= ies[i];
}
}
for (int ph = 1; ph <= h; ph++) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
modint now = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p] * now;
a[i + offset] = l + r;
a[i + offset + p] = l - r;
}
now *= sum_e[bsf(~(unsigned int)(s))];
}
}
}
void butterfly_inv(poly& a) {
int n = int(a.size());
int g = proot;
int h = ceil_pow2(n);
static bool first = true;
static modint sum_ie[30]; // sum_ie[i] = es[0] * ... * es[i - 1] * ies[i]
if (first) {
first = false;
modint es[30], ies[30]; // es[i]^(2^(2+i)) == 1
int cnt2 = bsf(mod - 1);
modint e = mod_pow(g, (mod - 1) >> cnt2);
modint ie = (modint)1 / e;
for (int i = cnt2; i >= 2; i--) {
// e^(2^i) == 1
es[i - 2] = e;
ies[i - 2] = ie;
e *= e;
ie *= ie;
}
modint now = 1;
for (int i = 0; i < cnt2 - 2; i++) {
sum_ie[i] = ies[i] * now;
now *= es[i];
}
}
for (int ph = h; ph >= 1; ph--) {
int w = 1 << (ph - 1), p = 1 << (h - ph);
modint inow = 1;
for (int s = 0; s < w; s++) {
int offset = s << (h - ph + 1);
for (int i = 0; i < p; i++) {
auto l = a[i + offset];
auto r = a[i + offset + p];
a[i + offset] = l + r;
a[i + offset + p] =
(unsigned long long)(mod + (ll)l - (ll)r) *
(ll)inow;
}
inow *= sum_ie[bsf(~(unsigned int)(s))];
}
}
}
poly multiply(poly g, poly h) {
int n = g.size();
int m = h.size();
if (n == 0 || m == 0)return {};
if (min(g.size(), h.size()) < 60) {
poly res(g.size() + h.size() - 1);
rep(i, g.size())rep(j, h.size()) {
res[i + j] += g[i] * h[j];
}
return res;
}
int z = 1 << ceil_pow2(n + m - 1);
g.resize(z);
butterfly(g);
h.resize(z);
butterfly(h);
rep(i, z) {
g[i] *= h[i];
}
butterfly_inv(g);
g.resize(n + m - 1);
modint iz = (modint)1 / (modint)z;
rep(i, n + m - 1) {
g[i] *= iz;
}
return g;
}
const int mn = 1 << 18;
vector<int> G[mn];
vector<int> par;
queue<vector<int>> q;
bool exi[mn];
modint a[mn];
modint c[mn];
modint ans[mn];
void yaru(vector<int> v) {
if (v.empty())return;
//coutarray(v);
//
for (int id : v)exi[id] = true;
int g; int sz = v.size();
function<int(int, int)> s_root = [&](int id, int fr)->int {
int res = 1;
int ma = 0;
for (int to : G[id]) {
if (to == fr)continue;
if (!exi[to])continue;
int nex = s_root(to, id);
ma = max(ma, nex);
res += nex;
}
if (ma <= sz / 2 && sz - res <= sz / 2)g = id;
return res;
};
s_root(v[0], -1);
//
//cout << "hello\n";
vector<modint> bb;
ans[g] += a[g];
addv(bb, 0, a[g]);
//
function<void(int, int)> dfs = [&](int id, int dep) {
if (!exi[id])return;
addv(bb, dep, a[id]);
ans[g] += c[dep] * a[id];
for (int to : G[id]) {
dfs(to, dep + 1);
}
};
for (int to : G[g])dfs(to, 1);
reverse(all(bb));
vector<int> ps;
int cur = par[g];
while (cur >= 0 && exi[cur]) {
ps.push_back(cur);
cur = par[cur];
}
vector<modint> cc(ps.size() + bb.size() + 1);
rep(i, cc.size())cc[i] = c[i];
vector<modint> bc = multiply(bb, cc);
rep(i, ps.size()) {
int loc = i + bb.size();
if (loc < bc.size()) {
ans[ps[i]] += bc[loc];
}
}
//
set<int> ban;
ban.insert(g);
vector<vector<int>> chs;
vector<int> nexs;
function<void(int, int)> search_next = [&](int id, int fr) {
if (!exi[id])return;
ban.insert(id);
nexs.push_back(id);
for (int to : G[id]) {
if (to == fr)continue;
search_next(to, id);
}
};
//
for (int to : G[g]) {
search_next(to, g);
if (nexs.empty())continue;
q.push(nexs);
chs.push_back(nexs);
nexs.clear();
}
vector<int> nv;
for (int id : v)if (!ban.count(id))nv.push_back(id);
if (nv.size()) {
q.push(nv);
}
//
for (int id : v)exi[id] = false;
}
void uoo(int n) {
vector<int> ori(n); rep(i, n)ori[i] = i;
q.push(ori);
while (!q.empty()) {
vector<int> v = q.front(); q.pop();
yaru(v);
}
}
void solve() {
int n; ll k; cin >> n >> k;
rep(i, n + 1) {
ll x; cin >> x; a[i] = x;
}
par.resize(n + 1);
par[0] = -1;
rep1(i, n) {
int p; cin >> p;
par[i] = p;
G[p].push_back(i);
}
c[0] = 1;
modint pro = 1;
rep1(i, n) {
pro *= k + 1 - i;
pro /= i;
c[i] = pro;
}
uoo(n + 1);
rep(i, n + 1) {
cout << ans[i] << "\n";
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(0);
cout << fixed << setprecision(10);
//init_f();
//init();
//expr();
//while(true)
//int t; cin >> t; rep(i, t)
solve();
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0