結果
問題 | No.665 Bernoulli Bernoulli |
ユーザー | soraie_ |
提出日時 | 2023-05-03 20:17:15 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 7 ms / 2,000 ms |
コード長 | 18,848 bytes |
コンパイル時間 | 2,701 ms |
コンパイル使用メモリ | 221,508 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-21 20:56:29 |
合計ジャッジ時間 | 3,255 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 3 ms
6,816 KB |
testcase_03 | AC | 7 ms
6,816 KB |
testcase_04 | AC | 7 ms
6,816 KB |
testcase_05 | AC | 6 ms
6,816 KB |
testcase_06 | AC | 6 ms
6,816 KB |
testcase_07 | AC | 6 ms
6,820 KB |
testcase_08 | AC | 6 ms
6,820 KB |
testcase_09 | AC | 6 ms
6,820 KB |
testcase_10 | AC | 6 ms
6,820 KB |
testcase_11 | AC | 6 ms
6,820 KB |
testcase_12 | AC | 7 ms
6,816 KB |
testcase_13 | AC | 6 ms
6,816 KB |
testcase_14 | AC | 6 ms
6,816 KB |
testcase_15 | AC | 6 ms
6,816 KB |
testcase_16 | AC | 6 ms
6,820 KB |
testcase_17 | AC | 6 ms
6,820 KB |
testcase_18 | AC | 6 ms
6,820 KB |
ソースコード
#ifdef _DEBUG #ifdef _SORAIE #define _GLIBCXX_DEBUG #endif #endif #include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimize("O3") #pragma GCC optimize("unroll-loops") using namespace std; //-------------------------------------------------------------------- #define all(a) (a).begin(),(a).end() #define rall(a) (a).rbegin(),(a).rend() #define overload4(_1,_2,_3,_4,name,...) name #define rep1(n) for(ll _ThiS_WoNt_Be_usEd=0;_ThiS_WoNt_Be_usEd<(ll)n;++_ThiS_WoNt_Be_usEd) #define rep2(i,n) for(ll i=0;i<(ll)n;++i) #define rep3(i,a,b) for(ll i=(ll)a;i<(ll)b;++i) #define rep4(i,a,b,c) for(ll i=(ll)a;i<(ll)b;i+=(ll)c) #define rep(...) overload4(__VA_ARGS__,rep4,rep3,rep2,rep1)(__VA_ARGS__) #if defined(_SORAIE) && defined(_DEBUG) #include <debug.hpp> #else #define debug(...) void(0); #define koko void(0); #define pass(...) void(0); #endif #define mp make_pair #define mt make_tuple #define ten(d) int64_t(1e##d) void doset(int n){cout << fixed << setprecision(n);cerr << fixed << setprecision(n);} struct asdfghjkl{asdfghjkl(){ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);doset(20);}} qwertyuiop; using ll = long long; using ld = long double; using dou = double; constexpr int inf = 1 << 30; constexpr ll INF = 1LL << 61; constexpr ld pi = 3.14159265358; constexpr ll mod1 = 1000000007LL; constexpr ll mod2 = 998244353LL; using pll = pair<ll,ll>; using pli = pair<ll,int>; using pii = pair<int,int>; template<class T, class U> inline bool chmin(T& a, const U& b){ if(a > b){ a = b; return 1; } return 0; } template<class T, class U> inline bool chmax(T& a, const U& b){ if(a < b){ a = b; return 1; } return 0; } ll modpow(ll n,ll m,ll MOD){ if(m == 0)return 1; if(m < 0)return 0; ll res = 1; n %= MOD; while(m){ if(m & 1)res = (res * n) % MOD; m >>= 1; n *= n; n %= MOD; } return res; } ll mypow(ll n,ll m){ if(m == 0)return 1; if(m < 0)return -1; ll res = 1; while(m){ if(m & 1)res = (res * n); m >>= 1; n *= n; } return res; } inline bool isp(ll n){ bool res = true; if(n == 1 || n == 0)return false; else{ for(ll i = 2;i * i <= n;i++){ if(n % i == 0){ res = false; break; } } return res; } } inline bool Yes(bool b = 1){cout << (b ? "Yes\n":"No\n");return b;} inline bool YES(bool b = 1){cout << (b ? "YES\n":"NO\n");return b;} map<ll,ll> primefactor(ll n){ map<ll,ll> ma; if(n <= 1)return ma; ll m = n; for(ll i = 2;i * i <= n;i++){ while(m % i == 0){ ma[i]++; m /= i; } } if(m != 1)ma[m]++; return ma; } vector<ll> divisor(ll n,bool sorted = true,bool samein = false){ vector<ll> res; for(ll i = 1;i * i <= n;i++){ if(n % i == 0){ res.push_back(i); if(i * i != n || samein)res.push_back(n / i); } } if(sorted)sort(all(res)); return res; } template<class T> inline void operator--(vector<T>& v) { for(int i = 0;i < int(v.size());i++)v[i]--; } template<class T> inline void operator--(vector<T>& v,int) { for(int i = 0;i < int(v.size());i++)v[i]--; } template<class T> inline void pv(const vector<T>& v,const string& sep = " ",const string& end = "\n") { for(int i = 0;i < int(v.size());i++) cout << v[i] << (i == int(v.size()) - 1 ? end : sep); } #ifndef ATCODER_MODINT_HPP #define ATCODER_MODINT_HPP 1 #include <cassert> #include <numeric> #include <type_traits> #ifdef _MSC_VER #include <intrin.h> #endif #include <utility> #ifdef _MSC_VER #include <intrin.h> #endif namespace atcoder { namespace internal { constexpr long long safe_mod(long long x, long long m) { x %= m; if (x < 0) x += m; return x; } struct barrett { unsigned int _m; unsigned long long im; explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {} unsigned int umod() const { return _m; } unsigned int mul(unsigned int a, unsigned int b) const { unsigned long long z = a; z *= b; #ifdef _MSC_VER unsigned long long x; _umul128(z, im, &x); #else unsigned long long x = (unsigned long long)(((unsigned __int128)(z)*im) >> 64); #endif unsigned int v = (unsigned int)(z - x * _m); if (_m <= v) v += _m; return v; } }; constexpr long long pow_mod_constexpr(long long x, long long n, int m) { if (m == 1) return 0; unsigned int _m = (unsigned int)(m); unsigned long long r = 1; unsigned long long y = safe_mod(x, m); while (n) { if (n & 1) r = (r * y) % _m; y = (y * y) % _m; n >>= 1; } return r; } constexpr bool is_prime_constexpr(int n) { if (n <= 1) return false; if (n == 2 || n == 7 || n == 61) return true; if (n % 2 == 0) return false; long long d = n - 1; while (d % 2 == 0) d /= 2; constexpr long long bases[3] = {2, 7, 61}; for (long long a : bases) { long long t = d; long long y = pow_mod_constexpr(a, t, n); while (t != n - 1 && y != 1 && y != n - 1) { y = y * y % n; t <<= 1; } if (y != n - 1 && t % 2 == 0) { return false; } } return true; } template <int n> constexpr bool is_prime = is_prime_constexpr(n); constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) { a = safe_mod(a, b); if (a == 0) return {b, 0}; long long s = b, t = a; long long m0 = 0, m1 = 1; while (t) { long long u = s / t; s -= t * u; m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b auto tmp = s; s = t; t = tmp; tmp = m0; m0 = m1; m1 = tmp; } if (m0 < 0) m0 += b / s; return {s, m0}; } constexpr int primitive_root_constexpr(int m) { if (m == 2) return 1; if (m == 167772161) return 3; if (m == 469762049) return 3; if (m == 754974721) return 11; if (m == 998244353) return 3; int divs[20] = {}; divs[0] = 2; int cnt = 1; int x = (m - 1) / 2; while (x % 2 == 0) x /= 2; for (int i = 3; (long long)(i)*i <= x; i += 2) { if (x % i == 0) { divs[cnt++] = i; while (x % i == 0) { x /= i; } } } if (x > 1) { divs[cnt++] = x; } for (int g = 2;; g++) { bool ok = true; for (int i = 0; i < cnt; i++) { if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) { ok = false; break; } } if (ok) return g; } } template <int m> constexpr int primitive_root = primitive_root_constexpr(m); unsigned long long floor_sum_unsigned(unsigned long long n, unsigned long long m, unsigned long long a, unsigned long long b) { unsigned long long ans = 0; while (true) { if (a >= m) { ans += n * (n - 1) / 2 * (a / m); a %= m; } if (b >= m) { ans += n * (b / m); b %= m; } unsigned long long y_max = a * n + b; if (y_max < m) break; n = (unsigned long long)(y_max / m); b = (unsigned long long)(y_max % m); std::swap(m, a); } return ans; } } // namespace internal } // namespace atcoder #include <cassert> #include <numeric> #include <type_traits> namespace atcoder { namespace internal { #ifndef _MSC_VER template <class T> using is_signed_int128 = typename std::conditional<std::is_same<T, __int128_t>::value || std::is_same<T, __int128>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int128 = typename std::conditional<std::is_same<T, __uint128_t>::value || std::is_same<T, unsigned __int128>::value, std::true_type, std::false_type>::type; template <class T> using make_unsigned_int128 = typename std::conditional<std::is_same<T, __int128_t>::value, __uint128_t, unsigned __int128>; template <class T> using is_integral = typename std::conditional<std::is_integral<T>::value || is_signed_int128<T>::value || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_signed_int = typename std::conditional<(is_integral<T>::value && std::is_signed<T>::value) || is_signed_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<(is_integral<T>::value && std::is_unsigned<T>::value) || is_unsigned_int128<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional< is_signed_int128<T>::value, make_unsigned_int128<T>, typename std::conditional<std::is_signed<T>::value, std::make_unsigned<T>, std::common_type<T>>::type>::type; #else template <class T> using is_integral = typename std::is_integral<T>; template <class T> using is_signed_int = typename std::conditional<is_integral<T>::value && std::is_signed<T>::value, std::true_type, std::false_type>::type; template <class T> using is_unsigned_int = typename std::conditional<is_integral<T>::value && std::is_unsigned<T>::value, std::true_type, std::false_type>::type; template <class T> using to_unsigned = typename std::conditional<is_signed_int<T>::value, std::make_unsigned<T>, std::common_type<T>>::type; #endif template <class T> using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>; template <class T> using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>; template <class T> using to_unsigned_t = typename to_unsigned<T>::type; } // namespace internal } // namespace atcoder namespace atcoder { namespace internal { struct modint_base {}; struct static_modint_base : modint_base {}; template <class T> using is_modint = std::is_base_of<modint_base, T>; template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>; } // namespace internal template <int m, std::enable_if_t<(1 <= m)>* = nullptr> struct static_modint : internal::static_modint_base { using mint = static_modint; public: static constexpr int mod() { return m; } static mint raw(int v) { mint x; x._v = v; return x; } static_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> static_modint(T v) { long long x = (long long)(v % (long long)(umod())); if (x < 0) x += umod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> static_modint(T v) { _v = (unsigned int)(v % umod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v -= rhs._v; if (_v >= umod()) _v += umod(); return *this; } mint& operator*=(const mint& rhs) { unsigned long long z = _v; z *= rhs._v; _v = (unsigned int)(z % umod()); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { if (prime) { assert(_v); return pow(umod() - 2); } else { auto eg = internal::inv_gcd(_v, m); assert(eg.first == 1); return eg.second; } } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static constexpr unsigned int umod() { return m; } static constexpr bool prime = internal::is_prime<m>; }; template <int id> struct dynamic_modint : internal::modint_base { using mint = dynamic_modint; public: static int mod() { return (int)(bt.umod()); } static void set_mod(int m) { assert(1 <= m); bt = internal::barrett(m); } static mint raw(int v) { mint x; x._v = v; return x; } dynamic_modint() : _v(0) {} template <class T, internal::is_signed_int_t<T>* = nullptr> dynamic_modint(T v) { long long x = (long long)(v % (long long)(mod())); if (x < 0) x += mod(); _v = (unsigned int)(x); } template <class T, internal::is_unsigned_int_t<T>* = nullptr> dynamic_modint(T v) { _v = (unsigned int)(v % mod()); } unsigned int val() const { return _v; } mint& operator++() { _v++; if (_v == umod()) _v = 0; return *this; } mint& operator--() { if (_v == 0) _v = umod(); _v--; return *this; } mint operator++(int) { mint result = *this; ++*this; return result; } mint operator--(int) { mint result = *this; --*this; return result; } mint& operator+=(const mint& rhs) { _v += rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator-=(const mint& rhs) { _v += mod() - rhs._v; if (_v >= umod()) _v -= umod(); return *this; } mint& operator*=(const mint& rhs) { _v = bt.mul(_v, rhs._v); return *this; } mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); } mint operator+() const { return *this; } mint operator-() const { return mint() - *this; } mint pow(long long n) const { assert(0 <= n); mint x = *this, r = 1; while (n) { if (n & 1) r *= x; x *= x; n >>= 1; } return r; } mint inv() const { auto eg = internal::inv_gcd(_v, mod()); assert(eg.first == 1); return eg.second; } friend mint operator+(const mint& lhs, const mint& rhs) { return mint(lhs) += rhs; } friend mint operator-(const mint& lhs, const mint& rhs) { return mint(lhs) -= rhs; } friend mint operator*(const mint& lhs, const mint& rhs) { return mint(lhs) *= rhs; } friend mint operator/(const mint& lhs, const mint& rhs) { return mint(lhs) /= rhs; } friend bool operator==(const mint& lhs, const mint& rhs) { return lhs._v == rhs._v; } friend bool operator!=(const mint& lhs, const mint& rhs) { return lhs._v != rhs._v; } private: unsigned int _v; static internal::barrett bt; static unsigned int umod() { return bt.umod(); } }; template <int id> internal::barrett dynamic_modint<id>::bt(998244353); using modint998244353 = static_modint<998244353>; using modint1000000007 = static_modint<1000000007>; using modint = dynamic_modint<-1>; namespace internal { template <class T> using is_static_modint = std::is_base_of<internal::static_modint_base, T>; template <class T> using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>; template <class> struct is_dynamic_modint : public std::false_type {}; template <int id> struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {}; template <class T> using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>; } // namespace internal } // namespace atcoder #endif // ATCODER_MODINT_HPP using namespace atcoder; template<class stream,int m> stream& operator<<(stream& os,const static_modint<m>& mi){ return os << mi.val(); } template<class stream,int m> stream& operator<<(stream& os,const dynamic_modint<m>& mi){ return os << mi.val(); } // #include <boost/multiprecision/cpp_dec_float.hpp> // using lld = boost::multiprecision::number<boost::multiprecision::cpp_dec_float<20>>; // #include <boost/multiprecision/cpp_int.hpp> // using lll = boost::multiprecision::cpp_int; //-------------------------------------------------------------------- int main(){ using mint = modint1000000007; ll N;int K; cin >> N >> K; vector<mint> ys(K + 2); rep(i,1,K + 2){ ys[i] = ys[i - 1] + mint(i).pow(K); } if(N <= K + 1){ cout << ys[N] << "\n"; return 0; } mint ans = 0,anum = 1,den = 1; rep(i,K + 2)anum *= N - i; rep(i,K + 1)den *= -(i + 1); rep(i,K + 2){ mint cnum = anum / (N - i); ans += cnum / den * ys[i]; if(i != K + 1)den *= i + 1,den /= -((K + 1) - i); } cout << ans << "\n"; }