結果
| 問題 |
No.2305 [Cherry 5th Tune N] Until That Day...
|
| コンテスト | |
| ユーザー |
square1001
|
| 提出日時 | 2023-05-14 22:32:07 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 3,276 bytes |
| コンパイル時間 | 954 ms |
| コンパイル使用メモリ | 87,104 KB |
| 最終ジャッジ日時 | 2025-02-13 00:35:57 |
|
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 4 TLE * 2 MLE * 15 |
ソースコード
#ifndef CLASS_MODINT
#define CLASS_MODINT
#include <cstdint>
template <std::uint32_t mod>
class modint {
private:
std::uint32_t n;
public:
modint() : n(0) {};
modint(std::int64_t n_) : n((n_ >= 0 ? n_ : mod - (-n_) % mod) % mod) {};
static constexpr std::uint32_t get_mod() { return mod; }
std::uint32_t get() const { return n; }
bool operator==(const modint& m) const { return n == m.n; }
bool operator!=(const modint& m) const { return n != m.n; }
modint& operator+=(const modint& m) { n += m.n; n = (n < mod ? n : n - mod); return *this; }
modint& operator-=(const modint& m) { n += mod - m.n; n = (n < mod ? n : n - mod); return *this; }
modint& operator*=(const modint& m) { n = std::uint64_t(n) * m.n % mod; return *this; }
modint operator+(const modint& m) const { return modint(*this) += m; }
modint operator-(const modint& m) const { return modint(*this) -= m; }
modint operator*(const modint& m) const { return modint(*this) *= m; }
modint inv() const { return (*this).pow(mod - 2); }
modint pow(std::uint64_t b) const {
modint ans = 1, m = modint(*this);
while (b) {
if (b & 1) ans *= m;
m *= m;
b >>= 1;
}
return ans;
}
};
#endif // CLASS_MODINT
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
using mint = modint<998244353>;
class edge {
public:
int to; mint weight;
edge() : to(-1), weight(mint()) {}
edge(int to_, const mint& weight_) : to(to_), weight(weight_) {}
};
int main() {
// step #1. read input (without queries) & make graph
int N;
cin >> N;
N += 1;
vector<int> P(N, -1);
for (int i = 1; i < N; i++) {
cin >> P[i];
}
vector<vector<edge> > G(N);
for (int i = 1; i < N; i++) {
int x;
cin >> x;
G[P[i]].push_back(edge(i, mint(x)));
}
auto solve = [&](int K, int mark) {
// step #2. compute values used in dynamic programming
vector<int> depth(N);
depth[0] = 0;
vector<mint> prob(N);
prob[0] = 1;
vector<bool> flag(N, false);
flag[mark] = true;
for (int i = 0; i < N; i++) {
if (!G[i].empty()) {
mint allmul = 0;
for (edge e : G[i]) {
allmul += e.weight;
}
allmul = prob[i] * allmul.inv();
for (edge e : G[i]) {
depth[e.to] = depth[i] + 1;
prob[e.to] = e.weight * allmul;
if (flag[i]) {
flag[e.to] = true;
}
}
}
}
vector<mint> v1(N + 1), v2(N + 1);
for (int i = 0; i < N; i++) {
if (G[i].empty()) {
v1[depth[i] + 1] += prob[i];
if (flag[i]) {
v2[depth[i] + 1] += prob[i];
}
}
}
// step #3. dynamic programming
vector<mint> dp1(K + 1), dp2(K + 1);
dp1[0] = 1;
dp2[0] = 0;
for (int i = 1; i <= K; i++) {
for (int j = 1; j <= N && j <= i; j++) {
dp1[i] += dp1[i - j] * v1[j];
dp2[i] += dp2[i - j] * v1[j] + dp1[i - j] * v2[j];
}
}
// step #4. calculate answer
mint answer = 0, s1 = 0, s2 = 0;
for (int i = N - 1; i >= 0; i--) {
s1 += v1[i + 1];
s2 += v2[i + 1];
if (K >= i) {
answer += dp2[K - i] * s1 + (i >= depth[mark] ? dp1[K - i] * s2 : mint(0));
}
}
if (mark == 0) {
answer -= 1;
}
return answer;
};
// step #6. process queries
int Q;
cin >> Q;
for (int i = 0; i < Q; i++) {
int a, k;
cin >> a >> k;
mint answer = solve(k, a);
cout << answer.get() << endl;
}
return 0;
}
square1001