結果

問題 No.1816 MUL-DIV Game
ユーザー kuro_Bkuro_B
提出日時 2023-05-16 17:38:33
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 434 ms / 2,000 ms
コード長 5,697 bytes
コンパイル時間 259 ms
コンパイル使用メモリ 82,000 KB
実行使用メモリ 98,560 KB
最終ジャッジ日時 2024-12-14 16:39:34
合計ジャッジ時間 10,443 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 27
権限があれば一括ダウンロードができます

ソースコード

diff #

###スニペット始まり###
import sys, re
from copy import copy, deepcopy
from math import ceil, floor, sqrt,factorial, gcd, pi, degrees, radians, sin, asin, cos, acos, tan, atan2
from statistics import mean, median
from collections import Counter, deque, defaultdict
from heapq import heapify, heappop, heappush
from itertools import permutations, accumulate, product, combinations, combinations_with_replacement
from bisect import bisect, bisect_left, bisect_right
from functools import reduce, lru_cache
from string import ascii_uppercase, ascii_lowercase
from decimal import Decimal, ROUND_HALF_UP #四捨五入用

def input(): return sys.stdin.readline().rstrip('\n')
#easy-testのpypyでは再帰数を下げる。
if __file__=='prog.py':
    sys.setrecursionlimit(10**5)
else:
    sys.setrecursionlimit(10**6)

def lcm(a, b): return a * b // gcd(a, b)

#3つ以上の最大公約数/最小公倍数。Nを要素数、Mを数値の大きさとして、O(NlogM)
def gcd_v2(l: list): return reduce(gcd, l)
def lcm_v2(l: list): return reduce(lcm, l)

#nPk
def nPk(n, k): return factorial(n) // factorial(n - k)

#逆元
def modinv(a, mod=10**9+7): return pow(a, mod-2, mod)
INF = float('inf')
MOD = 10 ** 9 + 7
###スニペット終わり###

N=int(input())
A=list(map(int, input().split()))

import math
from bisect import bisect_left, bisect_right, insort
from typing import Generic, Iterable, Iterator, TypeVar, Union, List
T = TypeVar('T')

class SortedMultiset(Generic[T]):
    BUCKET_RATIO = 50
    REBUILD_RATIO = 170

    def _build(self, a=None) -> None:
        "Evenly divide `a` into buckets."
        if a is None: a = list(self)
        size = self.size = len(a)
        bucket_size = int(math.ceil(math.sqrt(size / self.BUCKET_RATIO)))
        self.a = [a[size * i // bucket_size : size * (i + 1) // bucket_size] for i in range(bucket_size)]
    
    def __init__(self, a: Iterable[T] = []) -> None:
        "Make a new SortedMultiset from iterable. / O(N) if sorted / O(N log N)"
        a = list(a)
        if not all(a[i] <= a[i + 1] for i in range(len(a) - 1)):
            a = sorted(a)
        self._build(a)

    def __iter__(self) -> Iterator[T]:
        for i in self.a:
            for j in i: yield j

    def __reversed__(self) -> Iterator[T]:
        for i in reversed(self.a):
            for j in reversed(i): yield j
    
    def __len__(self) -> int:
        return self.size
    
    def __repr__(self) -> str:
        return "SortedMultiset" + str(self.a)
    
    def __str__(self) -> str:
        s = str(list(self))
        return "{" + s[1 : len(s) - 1] + "}"

    def _find_bucket(self, x: T) -> List[T]:
        "Find the bucket which should contain x. self must not be empty."
        for a in self.a:
            if x <= a[-1]: return a
        return a

    def __contains__(self, x: T) -> bool:
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        return i != len(a) and a[i] == x

    def count(self, x: T) -> int:
        "Count the number of x."
        return self.index_right(x) - self.index(x)

    def add(self, x: T) -> None:
        "Add an element. / O(√N)"
        if self.size == 0:
            self.a = [[x]]
            self.size = 1
            return
        a = self._find_bucket(x)
        insort(a, x)
        self.size += 1
        if len(a) > len(self.a) * self.REBUILD_RATIO:
            self._build()

    def discard(self, x: T) -> bool:
        "Remove an element and return True if removed. / O(√N)"
        if self.size == 0: return False
        a = self._find_bucket(x)
        i = bisect_left(a, x)
        if i == len(a) or a[i] != x: return False
        a.pop(i)
        self.size -= 1
        if len(a) == 0: self._build()
        return True

    def lt(self, x: T) -> Union[T, None]:
        "Find the largest element < x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] < x:
                return a[bisect_left(a, x) - 1]

    def le(self, x: T) -> Union[T, None]:
        "Find the largest element <= x, or None if it doesn't exist."
        for a in reversed(self.a):
            if a[0] <= x:
                return a[bisect_right(a, x) - 1]

    def gt(self, x: T) -> Union[T, None]:
        "Find the smallest element > x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] > x:
                return a[bisect_right(a, x)]

    def ge(self, x: T) -> Union[T, None]:
        "Find the smallest element >= x, or None if it doesn't exist."
        for a in self.a:
            if a[-1] >= x:
                return a[bisect_left(a, x)]
    
    def __getitem__(self, x: int) -> T:
        "Return the x-th element, or IndexError if it doesn't exist."
        if x < 0: x += self.size
        if x < 0: raise IndexError
        for a in self.a:
            if x < len(a): return a[x]
            x -= len(a)
        raise IndexError

    def index(self, x: T) -> int:
        "Count the number of elements < x."
        ans = 0
        for a in self.a:
            if a[-1] >= x:
                return ans + bisect_left(a, x)
            ans += len(a)
        return ans

    def index_right(self, x: T) -> int:
        "Count the number of elements <= x."
        ans = 0
        for a in self.a:
            if a[-1] > x:
                return ans + bisect_right(a, x)
            ans += len(a)
        return ans

sms=SortedMultiset(A)

for i in range(N-1):
    if i%2==0:
        add=sms[0]*sms[1]
        sms.discard(sms[0])
        sms.discard(sms[0])
        sms.add(add)
    else:
        sms.discard(sms[-1])
        sms.discard(sms[-1])
        sms.add(1)
print(sms[0])
0