結果
問題 | No.1068 #いろいろな色 / Red and Blue and more various colors (Hard) |
ユーザー | satashun |
提出日時 | 2023-05-18 07:14:40 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 701 ms / 3,500 ms |
コード長 | 21,001 bytes |
コンパイル時間 | 3,425 ms |
コンパイル使用メモリ | 231,240 KB |
実行使用メモリ | 142,168 KB |
最終ジャッジ日時 | 2024-12-15 23:58:21 |
合計ジャッジ時間 | 19,280 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 103 ms
112,820 KB |
testcase_01 | AC | 102 ms
112,904 KB |
testcase_02 | AC | 100 ms
112,904 KB |
testcase_03 | AC | 110 ms
113,564 KB |
testcase_04 | AC | 103 ms
113,252 KB |
testcase_05 | AC | 107 ms
113,328 KB |
testcase_06 | AC | 104 ms
113,256 KB |
testcase_07 | AC | 103 ms
113,204 KB |
testcase_08 | AC | 105 ms
113,268 KB |
testcase_09 | AC | 106 ms
113,368 KB |
testcase_10 | AC | 102 ms
113,060 KB |
testcase_11 | AC | 102 ms
113,168 KB |
testcase_12 | AC | 101 ms
112,996 KB |
testcase_13 | AC | 675 ms
141,880 KB |
testcase_14 | AC | 623 ms
140,912 KB |
testcase_15 | AC | 641 ms
140,880 KB |
testcase_16 | AC | 609 ms
140,876 KB |
testcase_17 | AC | 626 ms
141,484 KB |
testcase_18 | AC | 617 ms
141,124 KB |
testcase_19 | AC | 617 ms
141,936 KB |
testcase_20 | AC | 620 ms
140,960 KB |
testcase_21 | AC | 627 ms
140,936 KB |
testcase_22 | AC | 701 ms
140,944 KB |
testcase_23 | AC | 616 ms
142,168 KB |
testcase_24 | AC | 614 ms
140,836 KB |
testcase_25 | AC | 697 ms
141,704 KB |
testcase_26 | AC | 699 ms
141,580 KB |
testcase_27 | AC | 681 ms
140,948 KB |
testcase_28 | AC | 615 ms
140,836 KB |
testcase_29 | AC | 611 ms
140,828 KB |
testcase_30 | AC | 601 ms
141,976 KB |
testcase_31 | AC | 100 ms
112,804 KB |
ソースコード
#pragma region satashun // #pragma GCC optimize("Ofast") // #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using uint = unsigned int; using ll = long long; using ull = unsigned long long; using pii = pair<int, int>; template <class T> using V = vector<T>; template <class T> using VV = V<V<T>>; template <class T> V<T> make_vec(size_t a) { return V<T>(a); } template <class T, class... Ts> auto make_vec(size_t a, Ts... ts) { return V<decltype(make_vec<T>(ts...))>(a, make_vec<T>(ts...)); } template <typename T, typename V> void fill_vec(T& v, const V& val) { v = val; } template <typename T, typename V> void fill_vec(vector<T>& vec, const V& val) { for (auto& v : vec) fill_vec(v, val); } #define pb push_back #define eb emplace_back #define mp make_pair #define fi first #define se second #define rep(i, n) rep2(i, 0, n) #define rep2(i, m, n) for (int i = m; i < (n); i++) #define per(i, b) per2(i, 0, b) #define per2(i, a, b) for (int i = int(b) - 1; i >= int(a); i--) #define ALL(c) (c).begin(), (c).end() #define SZ(x) ((int)(x).size()) constexpr ll TEN(int n) { return (n == 0) ? 1 : 10 * TEN(n - 1); } template <class T, class U> void chmin(T& t, const U& u) { if (t > u) t = u; } template <class T, class U> void chmax(T& t, const U& u) { if (t < u) t = u; } template <typename T> int arglb(const V<T>& v, const T& x) { return distance(v.begin(), lower_bound(ALL(v), x)); } template <typename T> int argub(const V<T>& v, const T& x) { return distance(v.begin(), upper_bound(ALL(v), x)); } template <class T> void mkuni(vector<T>& v) { sort(ALL(v)); v.erase(unique(ALL(v)), end(v)); } template <class T> vector<int> sort_by(const vector<T>& v, bool increasing = true) { vector<int> res(v.size()); iota(res.begin(), res.end(), 0); if (increasing) { stable_sort(res.begin(), res.end(), [&](int i, int j) { return v[i] < v[j]; }); } else { stable_sort(res.begin(), res.end(), [&](int i, int j) { return v[i] > v[j]; }); } return res; } template <class T, class U> istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; } template <class T, class U> ostream& operator<<(ostream& os, const pair<T, U>& p) { os << "(" << p.first << "," << p.second << ")"; return os; } template <class T> istream& operator>>(istream& is, vector<T>& v) { for (auto& x : v) { is >> x; } return is; } template <class T> ostream& operator<<(ostream& os, const vector<T>& v) { os << "{"; rep(i, v.size()) { if (i) os << ","; os << v[i]; } os << "}"; return os; } template <class T> ostream& operator<<(ostream& os, const set<T>& ST) { os << "{"; for (auto it = ST.begin(); it != ST.end(); ++it) { if (it != ST.begin()) os << ","; os << *it; } os << "}"; return os; } template <class T> ostream& operator<<(ostream& os, const multiset<T>& ST) { os << "{"; for (auto it = ST.begin(); it != ST.end(); ++it) { if (it != ST.begin()) os << ","; os << *it; } os << "}"; return os; } template <class T, class U> ostream& operator<<(ostream& os, const map<T, U>& MP) { for (auto it = MP.begin(); it != MP.end(); ++it) { os << "(" << it->first << ": " << it->second << ")"; } return os; } string to_string(__int128_t x) { if (x == 0) return "0"; string result; if (x < 0) { result += "-"; x *= -1; } string t; while (x) { t.push_back('0' + x % 10); x /= 10; } reverse(t.begin(), t.end()); return result + t; } ostream& operator<<(ostream& o, __int128_t x) { return o << to_string(x); } #ifdef LOCAL void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << H; debug_out(T...); } #define debug(...) \ cerr << __LINE__ << " [" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__) #define dump(x) cerr << __LINE__ << " " << #x << " = " << (x) << endl #else #define debug(...) (void(0)) #define dump(x) (void(0)) #endif template <class T> V<T>& operator+=(V<T>& vec, const T& v) { for (auto& x : vec) x += v; return vec; } template <class T> V<T>& operator-=(V<T>& vec, const T& v) { for (auto& x : vec) x -= v; return vec; } // suc : 1 = newline, 2 = space template <class T> void print(T x, int suc = 1) { cout << x; if (suc == 1) cout << "\n"; else if (suc == 2) cout << " "; } template <class T> void print(const vector<T>& v, int suc = 1) { for (int i = 0; i < v.size(); ++i) print(v[i], i == int(v.size()) - 1 ? suc : 2); } template <class T> void show(T x) { print(x, 1); } template <typename Head, typename... Tail> void show(Head H, Tail... T) { print(H, 2); show(T...); } int topbit(int t) { return t == 0 ? -1 : 31 - __builtin_clz(t); } int topbit(ll t) { return t == 0 ? -1 : 63 - __builtin_clzll(t); } int botbit(int a) { return a == 0 ? 32 : __builtin_ctz(a); } int botbit(ll a) { return a == 0 ? 64 : __builtin_ctzll(a); } int popcount(int t) { return __builtin_popcount(t); } int popcount(ll t) { return __builtin_popcountll(t); } int bit_parity(int t) { return __builtin_parity(t); } int bit_parity(ll t) { return __builtin_parityll(t); } struct prepare_io { prepare_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(10); } } prep_io; #pragma endregion satashun template <unsigned int MOD> struct ModInt { using uint = unsigned int; using ull = unsigned long long; using M = ModInt; uint v; ModInt(ll _v = 0) { set_norm(_v % MOD + MOD); } M& set_norm(uint _v) { //[0, MOD * 2)->[0, MOD) v = (_v < MOD) ? _v : _v - MOD; return *this; } explicit operator bool() const { return v != 0; } explicit operator int() const { return v; } M operator+(const M& a) const { return M().set_norm(v + a.v); } M operator-(const M& a) const { return M().set_norm(v + MOD - a.v); } M operator*(const M& a) const { return M().set_norm(ull(v) * a.v % MOD); } M operator/(const M& a) const { return *this * a.inv(); } M& operator+=(const M& a) { return *this = *this + a; } M& operator-=(const M& a) { return *this = *this - a; } M& operator*=(const M& a) { return *this = *this * a; } M& operator/=(const M& a) { return *this = *this / a; } M operator-() const { return M() - *this; } M& operator++(int) { return *this = *this + 1; } M& operator--(int) { return *this = *this - 1; } M pow(ll n) const { if (n < 0) return inv().pow(-n); M x = *this, res = 1; while (n) { if (n & 1) res *= x; x *= x; n >>= 1; } return res; } M inv() const { ll a = v, b = MOD, p = 1, q = 0, t; while (b != 0) { t = a / b; swap(a -= t * b, b); swap(p -= t * q, q); } return M(p); } friend ostream& operator<<(ostream& os, const M& a) { return os << a.v; } friend istream& operator>>(istream& in, M& x) { ll v_; in >> v_; x = M(v_); return in; } bool operator<(const M& r) const { return v < r.v; } bool operator>(const M& r) const { return v < *this; } bool operator<=(const M& r) const { return !(r < *this); } bool operator>=(const M& r) const { return !(*this < r); } bool operator==(const M& a) const { return v == a.v; } bool operator!=(const M& a) const { return v != a.v; } static uint get_mod() { return MOD; } }; // using Mint = ModInt<1000000007>; using Mint = ModInt<998244353>; V<Mint> fact, ifact, inv; VV<Mint> small_comb; void mod_init() { const int maxv = 1000010; const int maxvv = 5000; fact.resize(maxv); ifact.resize(maxv); inv.resize(maxv); small_comb = make_vec<Mint>(maxvv, maxvv); fact[0] = 1; for (int i = 1; i < maxv; ++i) { fact[i] = fact[i - 1] * i; } ifact[maxv - 1] = fact[maxv - 1].inv(); for (int i = maxv - 2; i >= 0; --i) { ifact[i] = ifact[i + 1] * (i + 1); } for (int i = 1; i < maxv; ++i) { inv[i] = ifact[i] * fact[i - 1]; } for (int i = 0; i < maxvv; ++i) { small_comb[i][0] = small_comb[i][i] = 1; for (int j = 1; j < i; ++j) { small_comb[i][j] = small_comb[i - 1][j] + small_comb[i - 1][j - 1]; } } } Mint comb(int n, int r) { if (n < 0 || r < 0 || r > n) return Mint(0); if (n < small_comb.size()) return small_comb[n][r]; return fact[n] * ifact[r] * ifact[n - r]; } Mint inv_comb(int n, int r) { if (n < 0 || r < 0 || r > n) return Mint(0); return ifact[n] * fact[r] * fact[n - r]; } // O(k) Mint comb_slow(ll n, ll k) { if (n < 0 || k < 0 || k > n) return Mint(0); Mint res = ifact[k]; for (int i = 0; i < k; ++i) { res = res * (n - i); } return res; } // line up // a 'o' + b 'x' Mint comb2(int a, int b) { if (a < 0 || b < 0) return 0; return comb(a + b, a); } // divide a into b groups Mint nhr(int a, int b) { if (b == 0) return Mint(a == 0); return comb(a + b - 1, a); } // O(p + log_p n) Mint lucas(ll n, ll k, int p) { if (n < 0 || k < 0 || k > n) return Mint(0); Mint res = 1; while (n > 0) { res *= comb(n % p, k % p); n /= p; k /= p; } return res; } struct ModPrepare { ModPrepare() { mod_init(); } } prep_mod; /** * @docs docs/ntt.md */ template <class D> struct NumberTheoreticTransform { D root; V<D> roots = {0, 1}; V<int> rev = {0, 1}; int base = 1, max_base = -1; void init() { int mod = D::get_mod(); int tmp = mod - 1; max_base = 0; while (tmp % 2 == 0) { tmp /= 2; max_base++; } root = 2; while (true) { if (root.pow(1 << max_base).v == 1) { if (root.pow(1 << (max_base - 1)).v != 1) { break; } } root++; } } void ensure_base(int nbase) { if (max_base == -1) init(); if (nbase <= base) return; assert(nbase <= max_base); rev.resize(1 << nbase); for (int i = 0; i < (1 << nbase); ++i) { rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (nbase - 1)); } roots.resize(1 << nbase); while (base < nbase) { D z = root.pow(1 << (max_base - 1 - base)); for (int i = 1 << (base - 1); i < (1 << base); ++i) { roots[i << 1] = roots[i]; roots[(i << 1) + 1] = roots[i] * z; } ++base; } } void ntt(V<D>& a, bool inv = false) { int n = a.size(); // assert((n & (n - 1)) == 0); int zeros = __builtin_ctz(n); ensure_base(zeros); int shift = base - zeros; for (int i = 0; i < n; i++) { if (i < (rev[i] >> shift)) { swap(a[i], a[rev[i] >> shift]); } } for (int k = 1; k < n; k <<= 1) { for (int i = 0; i < n; i += 2 * k) { for (int j = 0; j < k; j++) { D x = a[i + j]; D y = a[i + j + k] * roots[j + k]; a[i + j] = x + y; a[i + j + k] = x - y; } } } int v = D(n).inv().v; if (inv) { reverse(a.begin() + 1, a.end()); for (int i = 0; i < n; i++) { a[i] *= v; } } } V<D> mul(V<D> a, V<D> b) { if (a.size() == 0 && b.size() == 0) return {}; int s = a.size() + b.size() - 1; int nbase = 1; while ((1 << nbase) < s) nbase++; int sz = 1 << nbase; if (sz <= 16) { V<D> ret(s); for (int i = 0; i < a.size(); i++) { for (int j = 0; j < b.size(); j++) ret[i + j] += a[i] * b[j]; } return ret; } a.resize(sz); b.resize(sz); ntt(a); ntt(b); for (int i = 0; i < sz; i++) { a[i] *= b[i]; } ntt(a, true); a.resize(s); return a; } }; // T : modint template <class T> void ntt_2d(VV<T>& a, bool rev) { if (a.size() == 0 || a[0].size() == 0) return; int h = a.size(), w = a[0].size(); NumberTheoreticTransform<T> fft; fft.init(); for (auto& v : a) { fft.ntt(v, rev); } rep(j, w) { V<T> vh(h); rep(i, h) { vh[i] = a[i][j]; } fft.ntt(vh, rev); rep(i, h) { a[i][j] = vh[i]; } } } // depends on FFT libs // work only with NTT-friendly mod NumberTheoreticTransform<Mint> ntt; struct prepare_FPS { prepare_FPS() { ntt.init(); } } prep_FPS; template <class D> struct Poly : public V<D> { template <class... Args> Poly(Args... args) : V<D>(args...) {} Poly(initializer_list<D> init) : V<D>(init.begin(), init.end()) {} int size() const { return V<D>::size(); } D at(int p) const { return (p < this->size() ? (*this)[p] : D(0)); } void shrink() { while (this->size() > 0 && this->back() == D(0)) this->pop_back(); } // first len terms Poly pref(int len) const { return Poly(this->begin(), this->begin() + min(this->size(), len)); } // for polynomial division Poly rev() const { Poly res = *this; reverse(res.begin(), res.end()); return res; } Poly shiftr(int d) const { int n = max(size() + d, 0); Poly res(n); for (int i = 0; i < size(); ++i) { if (i + d >= 0) { res[i + d] = at(i); } } return res; } Poly operator+(const Poly& r) const { auto n = max(size(), r.size()); V<D> tmp(n); for (int i = 0; i < n; ++i) { tmp[i] = at(i) + r.at(i); } return tmp; } Poly operator-(const Poly& r) const { auto n = max(size(), r.size()); V<D> tmp(n); for (int i = 0; i < n; ++i) { tmp[i] = at(i) - r.at(i); } return tmp; } // scalar Poly operator*(const D& k) const { int n = size(); V<D> tmp(n); for (int i = 0; i < n; ++i) { tmp[i] = at(i) * k; } return tmp; } Poly operator*(const Poly& r) const { Poly a = *this; Poly b = r; auto v = ntt.mul(a, b); return v; } // scalar Poly operator/(const D& k) const { return *this * k.inv(); } Poly operator/(const Poly& r) const { if (size() < r.size()) { return {{}}; } int d = size() - r.size() + 1; return (rev().pref(d) * r.rev().inv(d)).pref(d).rev(); } Poly operator%(const Poly& r) const { auto res = *this - *this / r * r; res.shrink(); return res; } Poly diff() const { V<D> res(max(0, size() - 1)); for (int i = 1; i < size(); ++i) { res[i - 1] = at(i) * i; } return res; } Poly inte() const { V<D> res(size() + 1); for (int i = 0; i < size(); ++i) { res[i + 1] = at(i) / (D)(i + 1); } return res; } // f * f.inv(m) === 1 mod (x^m) // f_0 ^ -1 must exist Poly inv(int m) const { Poly res = Poly({D(1) / at(0)}); for (int i = 1; i < m; i *= 2) { res = (res * D(2) - res * res * pref(i * 2)).pref(i * 2); } return res.pref(m); } // f_0 = 1 must hold Poly log(int n) const { auto f = pref(n); return (f.diff() * f.inv(n - 1)).pref(n - 1).inte(); } // f_0 = 0 must hold Poly exp(int n) const { auto h = diff(); Poly f({1}), g({1}); for (int m = 1; m < n; m *= 2) { g = (g * D(2) - f * g * g).pref(m); auto q = h.pref(m - 1); auto w = (q + g * (f.diff() - f * q)).pref(m * 2 - 1); f = (f + f * (*this - w.inte()).pref(m * 2)).pref(m * 2); } return f.pref(n); } // front n elements of f(x)^k // be careful when k = 0 Poly pow(ll k, int n) const { int zero = 0; while (zero < size() && at(zero) == 0) { zero++; } if (zero == size() || zero * k >= n) { Poly res(n); if (n > 0 && k == 0) res[0] = 1; return res; } Poly h(this->begin() + zero, this->end()); D a = h[0], ra = D(1) / a; h *= ra; h = h.log(n - zero * k) * D(k); h = h.exp(n - zero * k); h = h.shiftr(zero * k) * a.pow(k); return h; } // f_0 = 1 must hold (use it with modular sqrt) // CF250E Poly sqrt(int n) const { Poly f = pref(n); Poly g({1}); for (int i = 1; i < n; i *= 2) { g = (g + f.pref(i * 2) * g.inv(i * 2)) * D(2).inv(); } return g.pref(n); } D eval(D x) const { D res = 0, c = 1; for (auto a : *this) { res += a * c; c *= x; } return res; } Poly powmod(ll k, const Poly& md) { auto v = *this % md; Poly res{1}; while (k) { if (k & 1) { res = res * v % md; } v = v * v % md; k /= 2; } return res; } Poly& operator+=(const Poly& r) { return *this = *this + r; } Poly& operator-=(const Poly& r) { return *this = *this - r; } Poly& operator*=(const D& r) { return *this = *this * r; } Poly& operator*=(const Poly& r) { return *this = *this * r; } Poly& operator/=(const Poly& r) { return *this = *this / r; } Poly& operator/=(const D& r) { return *this = *this / r; } Poly& operator%=(const Poly& r) { return *this = *this % r; } friend ostream& operator<<(ostream& os, const Poly& pl) { if (pl.size() == 0) return os << "0"; for (int i = 0; i < pl.size(); ++i) { if (pl[i]) { os << pl[i] << "x^" << i; if (i + 1 != pl.size()) os << ","; } } return os; } explicit operator bool() const { bool f = false; for (int i = 0; i < size(); ++i) { if (at(i)) { f = true; } } return f; } }; // calculate characteristic polynomial // c_0 * s_i + c_1 * s_{i+1} + ... + c_k * s_{i+k} = 0 // c_k = -1 template <class T> Poly<T> berlekamp_massey(const V<T>& s) { int n = int(s.size()); V<T> b = {T(-1)}, c = {T(-1)}; T y = Mint(1); for (int ed = 1; ed <= n; ed++) { int l = int(c.size()), m = int(b.size()); T x = 0; for (int i = 0; i < l; i++) { x += c[i] * s[ed - l + i]; } b.push_back(0); m++; if (!x) { continue; } T freq = x / y; if (l < m) { auto tmp = c; c.insert(begin(c), m - l, Mint(0)); for (int i = 0; i < m; i++) { c[m - 1 - i] -= freq * b[m - 1 - i]; } b = tmp; y = x; } else { for (int i = 0; i < m; i++) { c[l - 1 - i] -= freq * b[m - 1 - i]; } } } return c; } // HUPC 2020 day3 K, ABC225H // calculate vec[0] * vec[1] * ... // deg(result) must be bounded template <class T> Poly<T> prod(const V<Poly<T>>& vec) { auto comp = [](const auto& a, const auto& b) -> bool { return a.size() > b.size(); }; priority_queue<Poly<T>, V<Poly<T>>, decltype(comp)> que(comp); que.push(Poly<T>{1}); for (auto& pl : vec) que.push(pl); while (que.size() > 1) { auto va = que.top(); que.pop(); auto vb = que.top(); que.pop(); que.push(va * vb); } return que.top(); } // ABC215 G // expand f(x + c) // require factorial template <class T> Poly<T> taylor_shift(const Poly<T>& f, ll c) { using P = Poly<T>; int n = f.size(); T powc = 1; P p(n), q(n); rep(i, n) { p[i] = f[i] * fact[i]; q[n - 1 - i] = powc * ifact[i]; powc *= c; } p = p * q; rep(i, n) q[i] = p[n - 1 + i] * ifact[i]; return q; } void slv() { int N, Q; cin >> N >> Q; V<ll> A(N); V<int> B(Q); cin >> A >> B; using P = Poly<Mint>; V<P> vp(N); rep(i, N) vp[i] = P{A[i] - 1, 1}; auto f = prod(vp); for (int b : B) { show(f[b]); } } int main() { int cases = 1; // cin >> cases; rep(i, cases) slv(); return 0; }