結果
問題 | No.2181 LRM Question 2 |
ユーザー |
![]() |
提出日時 | 2023-05-19 07:02:51 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 8,658 bytes |
コンパイル時間 | 318 ms |
コンパイル使用メモリ | 82,476 KB |
実行使用メモリ | 140,088 KB |
最終ジャッジ日時 | 2024-12-17 17:05:39 |
合計ジャッジ時間 | 17,933 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 TLE * 1 |
other | AC * 19 TLE * 4 |
ソースコード
import sysreadline=sys.stdin.readlineimport mathfrom collections import defaultdictdef Extended_Euclid(n,m):stack=[]while m:stack.append((n,m))n,m=m,n%mif n>=0:x,y=1,0else:x,y=-1,0for i in range(len(stack)-1,-1,-1):n,m=stack[i]x,y=y,x-(n//m)*yreturn x,yclass MOD:def __init__(self,p,e=None):self.p=pself.e=eif self.e==None:self.mod=self.pelse:self.mod=self.p**self.edef Pow(self,a,n):a%=self.modif n>=0:return pow(a,n,self.mod)else:#assert math.gcd(a,self.mod)==1x=Extended_Euclid(a,self.mod)[0]return pow(x,-n,self.mod)def Build_Fact(self,N):assert N>=0self.factorial=[1]if self.e==None:for i in range(1,N+1):self.factorial.append(self.factorial[-1]*i%self.mod)else:self.cnt=[0]*(N+1)for i in range(1,N+1):self.cnt[i]=self.cnt[i-1]ii=iwhile ii%self.p==0:ii//=self.pself.cnt[i]+=1self.factorial.append(self.factorial[-1]*ii%self.mod)self.factorial_inve=[None]*(N+1)self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)for i in range(N-1,-1,-1):ii=i+1while ii%self.p==0:ii//=self.pself.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.moddef Build_Inverse(self,N):self.inverse=[None]*(N+1)assert self.p>Nself.inverse[1]=1for n in range(2,N+1):if n%self.p==0:continuea,b=divmod(self.mod,n)self.inverse[n]=(-a*self.inverse[b])%self.moddef Inverse(self,n):return self.inverse[n]def Fact(self,N):if N<0:return 0retu=self.factorial[N]if self.e!=None and self.cnt[N]:retu*=pow(self.p,self.cnt[N],self.mod)%self.modretu%=self.modreturn retudef Fact_Inve(self,N):if self.e!=None and self.cnt[N]:return Nonereturn self.factorial_inve[N]def Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.modif self.e!=None:cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]if divisible_count:return retu,cntelse:retu*=pow(self.p,cnt,self.mod)retu%=self.modreturn retuclass Prime:def __init__(self,N):assert N<=10**8self.smallest_prime_factor=[None]*(N+1)for i in range(2,N+1,2):self.smallest_prime_factor[i]=2n=int(N**.5)+1for p in range(3,n,2):if self.smallest_prime_factor[p]==None:self.smallest_prime_factor[p]=pfor i in range(p**2,N+1,2*p):if self.smallest_prime_factor[i]==None:self.smallest_prime_factor[i]=pfor p in range(n,N+1):if self.smallest_prime_factor[p]==None:self.smallest_prime_factor[p]=pself.primes=[p for p in range(N+1) if p==self.smallest_prime_factor[p]]def Factorize(self,N):assert N>=1factors=defaultdict(int)if N<=len(self.smallest_prime_factor)-1:while N!=1:factors[self.smallest_prime_factor[N]]+=1N//=self.smallest_prime_factor[N]else:for p in self.primes:while N%p==0:N//=pfactors[p]+=1if N<p*p:if N!=1:factors[N]+=1breakif N<=len(self.smallest_prime_factor)-1:while N!=1:factors[self.smallest_prime_factor[N]]+=1N//=self.smallest_prime_factor[N]breakelse:if N!=1:factors[N]+=1return factorsdef Divisors(self,N):assert N>0divisors=[1]for p,e in self.Factorize(N).items():pow_p=[1]for _ in range(e):pow_p.append(pow_p[-1]*p)divisors=[i*j for i in divisors for j in pow_p]return divisorsdef Is_Prime(self,N):return N==self.smallest_prime_factor[N]def Totient(self,N):for p in self.Factorize(N).keys():N*=p-1N//=preturn Ndef Mebius(self,N):fact=self.Factorize(N)for e in fact.values():if e>=2:return 0else:if len(fact)%2==0:return 1else:return -1def CRT(remainder_lst,mod_lst):assert len(remainder_lst)==len(mod_lst)if not remainder_lst:return 0,1remainder,mod=remainder_lst[0],mod_lst[0]for r,m in zip(remainder_lst[1:],mod_lst[1:]):if (r,m)==(-1,0):remainder,mod=-1,0breakr%=mg=math.gcd(mod,m)lcm=LCM(mod,m)if remainder%g!=r%g:remainder,mod=-1,0breakremainder,mod=(r+m*((remainder-r)//g)*Extended_Euclid(m//g,mod//g)[0])%lcm,lcmreturn remainder,moddef LCM(n,m):if n or m:return abs(n)*abs(m)//math.gcd(n,m)return 0class Lucas_Prime:def __init__(self,P,e=1):self.P=Pself.e=eself.mod=self.P**self.eself.factorial=[1]for i in range(1,self.mod):self.factorial.append(self.factorial[-1])if i%P:self.factorial[i]*=iself.factorial[i]%=self.moddef Comb(self,N,K,divisible_count=False):if K<0 or K>N:return 0K0,K1=K,N-KN_lst=[]N_=Nwhile N_:N_lst.append(N_%self.mod)N_//=self.PK0_lst=[]K0_=K0for _ in range(len(N_lst)):K0_lst.append(K0_%self.mod)K0_//=self.PK1_lst=[]K1_=K1for _ in range(len(N_lst)):K1_lst.append(K1_%self.mod)K1_//=self.Pretu,retu_rev=1,1for n in N_lst:retu*=self.factorial[n]retu%=self.modfor k0 in K0_lst:retu_rev*=self.factorial[k0]retu_rev%=self.modfor k1 in K1_lst:retu_rev*=self.factorial[k1]retu_rev%=self.modretu*=MOD(self.mod).Pow(retu_rev,-1)if self.P!=2 or self.e<=2:cnt=0N_=N//self.modK0_=K0//self.modK1_=K1//self.modwhile N_:cnt+=N_N_//=self.Pwhile K0_:cnt+=K0_K0_//=self.Pwhile K1_:cnt+=K1_K1_//=self.Pif cnt%2==1:retu*=-1retu%=self.moddiv_cnt=0N_,K0_,K1_=N,K0,K1while N_:div_cnt+=N_N_//=self.Pwhile K0_:div_cnt-=K0_K0_//=self.Pwhile K1_:div_cnt-=K1_K1_//=self.Pif divisible_count:return retu,div_cntelse:retu*=pow(self.P,div_cnt,self.mod)retu%=self.modreturn retuclass Lucas:def __init__(self,mod):self.mod=modP=Prime(int(self.mod**.5))self.LP=[(p,e,Lucas_Prime(p,e)) for p,e in P.Factorize(mod).items()]def Comb(self,N,K):lst_r=[]lst_m=[]for p,e,lp in self.LP:lst_r.append(lp.Comb(N,K))lst_m.append(p**e)r,_=CRT(lst_r,lst_m)return rdef Factorize(N):assert N>=1factors=defaultdict(int)for p in range(2,N):if p**2>N:breakwhile N%p==0:factors[p]+=1N//=pif N!=1:factors[N]+=1return factorsL,R,M=map(int,readline().split())rem_lst,mod_lst=[],[]for p,e in Factorize(M).items():LP=Lucas_Prime(p,e)ans=0mod=p**efor m in range(L,R+1):ans+=LP.Comb(2*m,m)-2ans%=modrem_lst.append(ans)mod_lst.append(mod)ans,_=CRT(rem_lst,mod_lst)print(ans)