結果

問題 No.2004 Incremental Coins
ユーザー vwxyzvwxyz
提出日時 2023-05-23 18:37:47
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 1,446 ms / 2,000 ms
コード長 10,084 bytes
コンパイル時間 392 ms
コンパイル使用メモリ 81,896 KB
実行使用メモリ 366,004 KB
最終ジャッジ日時 2024-11-18 21:11:19
合計ジャッジ時間 20,958 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 49 ms
56,064 KB
testcase_01 AC 50 ms
55,936 KB
testcase_02 AC 45 ms
56,192 KB
testcase_03 AC 51 ms
56,576 KB
testcase_04 AC 72 ms
69,376 KB
testcase_05 AC 60 ms
59,776 KB
testcase_06 AC 142 ms
80,156 KB
testcase_07 AC 140 ms
79,684 KB
testcase_08 AC 1,028 ms
272,008 KB
testcase_09 AC 1,446 ms
273,940 KB
testcase_10 AC 746 ms
273,444 KB
testcase_11 AC 952 ms
282,752 KB
testcase_12 AC 1,187 ms
283,880 KB
testcase_13 AC 1,223 ms
366,004 KB
testcase_14 AC 1,292 ms
313,932 KB
testcase_15 AC 852 ms
284,680 KB
testcase_16 AC 1,038 ms
284,764 KB
testcase_17 AC 911 ms
283,252 KB
testcase_18 AC 1,172 ms
281,632 KB
testcase_19 AC 1,374 ms
286,260 KB
testcase_20 AC 1,336 ms
284,600 KB
testcase_21 AC 1,265 ms
286,560 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import sys
readline=sys.stdin.readline
from collections import deque

mod = 998244353
imag = 911660635
iimag = 86583718
rate2 = (911660635, 509520358, 369330050, 332049552, 983190778, 123842337, 238493703, 975955924, 603855026, 856644456, 131300601,
              842657263, 730768835, 942482514, 806263778, 151565301, 510815449, 503497456, 743006876, 741047443, 56250497, 867605899)
irate2 = (86583718, 372528824, 373294451, 645684063, 112220581, 692852209, 155456985, 797128860, 90816748, 860285882, 927414960,
               354738543, 109331171, 293255632, 535113200, 308540755, 121186627, 608385704, 438932459, 359477183, 824071951, 103369235)
rate3 = (372528824, 337190230, 454590761, 816400692, 578227951, 180142363, 83780245, 6597683, 70046822, 623238099,
              183021267, 402682409, 631680428, 344509872, 689220186, 365017329, 774342554, 729444058, 102986190, 128751033, 395565204)
irate3 = (509520358, 929031873, 170256584, 839780419, 282974284, 395914482, 444904435, 72135471, 638914820, 66769500,
               771127074, 985925487, 262319669, 262341272, 625870173, 768022760, 859816005, 914661783, 430819711, 272774365, 530924681)

def butterfly(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = 0
    while len_ < h:
        if h - len_ == 1:
            p = 1 << (h - len_ - 1)
            rot = 1
            for s in range(1 << len_):
                offset = s << (h - len_)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p] * rot % mod
                    a[i + offset] = (l + r) % mod
                    a[i + offset + p] = (l - r) % mod
                if s + 1 != 1 << len_:
                    rot *= rate2[(~s & -~s).bit_length() - 1]
                    rot %= mod
            len_ += 1
        else:
            p = 1 << (h - len_ - 2)
            rot = 1
            for s in range(1 << len_):
                rot2 = rot * rot % mod
                rot3 = rot2 * rot % mod
                offset = s << (h - len_)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p] * rot
                    a2 = a[i + offset + p * 2] * rot2
                    a3 = a[i + offset + p * 3] * rot3
                    a1na3imag = (a1 - a3) % mod * imag
                    a[i + offset] = (a0 + a2 + a1 + a3) % mod
                    a[i + offset + p] = (a0 + a2 - a1 - a3) % mod
                    a[i + offset + p * 2] = (a0 - a2 + a1na3imag) % mod
                    a[i + offset + p * 3] = (a0 - a2 - a1na3imag) % mod
                if s + 1 != 1 << len_:
                    rot *= rate3[(~s & -~s).bit_length() - 1]
                    rot %= mod
            len_ += 2

def butterfly_inv(a):
    n = len(a)
    h = (n - 1).bit_length()
    len_ = h
    while len_:
        if len_ == 1:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 1)):
                offset = s << (h - len_ + 1)
                for i in range(p):
                    l = a[i + offset]
                    r = a[i + offset + p]
                    a[i + offset] = (l + r) % mod
                    a[i + offset + p] = (l - r) * irot % mod
                if s + 1 != (1 << (len_ - 1)):
                    irot *= irate2[(~s & -~s).bit_length() - 1]
                    irot %= mod
            len_ -= 1
        else:
            p = 1 << (h - len_)
            irot = 1
            for s in range(1 << (len_ - 2)):
                irot2 = irot * irot % mod
                irot3 = irot2 * irot % mod
                offset = s << (h - len_ + 2)
                for i in range(p):
                    a0 = a[i + offset]
                    a1 = a[i + offset + p]
                    a2 = a[i + offset + p * 2]
                    a3 = a[i + offset + p * 3]
                    a2na3iimag = (a2 - a3) * iimag % mod
                    a[i + offset] = (a0 + a1 + a2 + a3) % mod
                    a[i + offset + p] = (a0 - a1 + a2na3iimag) * irot % mod
                    a[i + offset + p * 2] = (a0 + a1 - a2 - a3) * irot2 % mod
                    a[i + offset + p * 3] = (a0 - a1 - a2na3iimag) * irot3 % mod
                if s + 1 != (1 << (len_ - 2)):
                    irot *= irate3[(~s & -~s).bit_length() - 1]
                    irot %= mod
            len_ -= 2

def convolution_naive(a, b):
    n = len(a)
    m = len(b)
    ans = [0] * (n + m - 1)
    if n < m:
        for j in range(m):
            for i in range(n):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % mod
    else:
        for i in range(n):
            for j in range(m):
                ans[i + j] = (ans[i + j] + a[i] * b[j]) % mod
    return ans

def convolution_ntt(a, b):
    a = a.copy()
    b = b.copy()
    n = len(a)
    m = len(b)
    z = 1 << (n + m - 2).bit_length()
    a += [0] * (z - n)
    butterfly(a)
    b += [0] * (z - m)
    butterfly(b)
    for i in range(z):
        a[i] = a[i] * b[i] % mod
    butterfly_inv(a)
    a = a[:n + m - 1]
    iz = pow(z, mod - 2, mod)
    for i in range(n + m - 1):
        a[i] = a[i] * iz % mod
    return a

def convolution_square(a):
    a = a.copy()
    n = len(a)
    z = 1 << (2 * n - 2).bit_length()
    a += [0] * (z - n)
    butterfly(a)
    for i in range(z):
        a[i] = a[i] * a[i] % mod
    butterfly_inv(a)
    a = a[:2 * n - 1]
    iz = pow(z, mod - 2, mod)
    for i in range(2 * n - 1):
        a[i] = a[i] * iz % mod
    return a

def convolution(a, b):
    """It calculates (+, x) convolution in mod 998244353. 
    Given two arrays a[0], a[1], ..., a[n - 1] and b[0], b[1], ..., b[m - 1], 
    it calculates the array c of length n + m - 1, defined by

    >   c[i] = sum(a[j] * b[i - j] for j in range(i + 1)) % 998244353.

    It returns an empty list if at least one of a and b are empty.

    Complexity
    ----------

    >   O(n log n), where n = len(a) + len(b).
    """
    n = len(a)
    m = len(b)
    if n == 0 or m == 0:
        return []
    if min(n, m) <= 60:
        return convolution_naive(a, b)
    if a is b:
        return convolution_square(a)
    return convolution_ntt(a, b)

def Extended_Euclid(n,m):
    stack=[]
    while m:
        stack.append((n,m))
        n,m=m,n%m
    if n>=0:
        x,y=1,0
    else:
        x,y=-1,0
    for i in range(len(stack)-1,-1,-1):
        n,m=stack[i]
        x,y=y,x-(n//m)*y
    return x,y

class MOD:
    def __init__(self,p,e=None):
        self.p=p
        self.e=e
        if self.e==None:
            self.mod=self.p
        else:
            self.mod=self.p**self.e

    def Pow(self,a,n):
        a%=self.mod
        if n>=0:
            return pow(a,n,self.mod)
        else:
            #assert math.gcd(a,self.mod)==1
            x=Extended_Euclid(a,self.mod)[0]
            return pow(x,-n,self.mod)

    def Build_Fact(self,N):
        assert N>=0
        self.factorial=[1]
        if self.e==None:
            for i in range(1,N+1):
                self.factorial.append(self.factorial[-1]*i%self.mod)
        else:
            self.cnt=[0]*(N+1)
            for i in range(1,N+1):
                self.cnt[i]=self.cnt[i-1]
                ii=i
                while ii%self.p==0:
                    ii//=self.p
                    self.cnt[i]+=1
                self.factorial.append(self.factorial[-1]*ii%self.mod)
        self.factorial_inve=[None]*(N+1)
        self.factorial_inve[-1]=self.Pow(self.factorial[-1],-1)
        for i in range(N-1,-1,-1):
            ii=i+1
            while ii%self.p==0:
                ii//=self.p
            self.factorial_inve[i]=(self.factorial_inve[i+1]*ii)%self.mod

    def Build_Inverse(self,N):
        self.inverse=[None]*(N+1)
        assert self.p>N
        self.inverse[1]=1
        for n in range(2,N+1):
            if n%self.p==0:
                continue
            a,b=divmod(self.mod,n)
            self.inverse[n]=(-a*self.inverse[b])%self.mod
    
    def Inverse(self,n):
        return self.inverse[n]

    def Fact(self,N):
        if N<0:
            return 0
        retu=self.factorial[N]
        if self.e!=None and self.cnt[N]:
            retu*=pow(self.p,self.cnt[N],self.mod)%self.mod
            retu%=self.mod
        return retu

    def Fact_Inve(self,N):
        if self.e!=None and self.cnt[N]:
            return None
        return self.factorial_inve[N]

    def Comb(self,N,K,divisible_count=False):
        if K<0 or K>N:
            return 0
        retu=self.factorial[N]*self.factorial_inve[K]%self.mod*self.factorial_inve[N-K]%self.mod
        if self.e!=None:
            cnt=self.cnt[N]-self.cnt[N-K]-self.cnt[K]
            if divisible_count:
                return retu,cnt
            else:
                retu*=pow(self.p,cnt,self.mod)
                retu%=self.mod
        return retu

N,K=map(int,readline().split())
A=list(map(int,readline().split()))
P=list(map(int,readline().split()))
child=[[] for x in range(N+1)]
for i in range(1,N+1):
    child[P[i-1]].append(i)
dp=[deque([]) for x in range(N+1)]
MD=MOD(mod)
MD.Build_Fact(N+1)
fact=1
poly_K=[]
for i in range(N+1):
    poly_K.append(fact*MD.Fact_Inve(i)%mod)
    fact*=K-i
    fact%=mod
for x in range(N,-1,-1):
    if child[x]:
        ma=max(len(dp[y]) for y in child[x])
        for y in child[x]:
            if len(dp[y])==ma:
                yy=y
                break
        dp[x]=dp[yy]
        for y in child[x]:
            if y==yy:
                continue
            for i in range(len(dp[y])):
                dp[x][i]+=dp[y][i]
                dp[x][i]%=mod
    dp[x].appendleft(A[x])
ans_lst=[None]*(N+1)
DP=[None]*(N+1)
le=len(dp[0])
DP[0]=deque(convolution(list(dp[0]),list(poly_K[:le][::-1]))[le-1:])
for x in range(N+1):
    ans_lst[x]=DP[x].popleft()
    for y in child[x]:
        if dp[x] is dp[y]:
            DP[y]=DP[x]
        else:
            le=len(dp[y])
            DP[y]=deque(convolution(list(dp[y]),list(poly_K[:le][::-1]))[le-1:])
            for i in range(le):
                DP[x][i]-=DP[y][i]
                DP[x][i]%=mod
print(*ans_lst,sep="\n")
0