結果
問題 | No.2313 Product of Subsequence (hard) |
ユーザー | navel_tos |
提出日時 | 2023-05-25 01:41:29 |
言語 | PyPy3 (7.3.15) |
結果 |
MLE
|
実行時間 | - |
コード長 | 2,202 bytes |
コンパイル時間 | 472 ms |
コンパイル使用メモリ | 81,920 KB |
実行使用メモリ | 850,468 KB |
最終ジャッジ日時 | 2024-06-06 10:03:47 |
合計ジャッジ時間 | 11,071 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 35 ms
52,352 KB |
testcase_01 | AC | 36 ms
52,096 KB |
testcase_02 | AC | 45 ms
61,056 KB |
testcase_03 | AC | 99 ms
77,528 KB |
testcase_04 | AC | 107 ms
77,568 KB |
testcase_05 | AC | 143 ms
78,720 KB |
testcase_06 | AC | 93 ms
76,832 KB |
testcase_07 | AC | 119 ms
77,312 KB |
testcase_08 | AC | 3,143 ms
205,236 KB |
testcase_09 | AC | 347 ms
115,516 KB |
testcase_10 | AC | 1,431 ms
177,144 KB |
testcase_11 | AC | 439 ms
102,820 KB |
testcase_12 | AC | 1,092 ms
166,944 KB |
testcase_13 | MLE | - |
testcase_14 | -- | - |
testcase_15 | -- | - |
testcase_16 | -- | - |
testcase_17 | -- | - |
testcase_18 | -- | - |
testcase_19 | -- | - |
testcase_20 | -- | - |
testcase_21 | -- | - |
testcase_22 | -- | - |
testcase_23 | -- | - |
testcase_24 | -- | - |
testcase_25 | -- | - |
testcase_26 | -- | - |
testcase_27 | -- | - |
testcase_28 | -- | - |
testcase_29 | -- | - |
ソースコード
#yukicoder 2313 Product of Subsequence(Hard) ''' 制約: R<10^9 だが、この制約下での約数数は高々1344個。 735134400=2^6*3^3*5^2*7^1*11^1*13^1*17^1 931170240=2^6*3^2*5^1*7^1*11^1*13^1*17^1*19^1 なのでDPで解けそう。 ただ ABC300E Dice Product 3 と異なり、元となる素因数が事前に与えられないため、 DP[i][j][k]: 2^i * 3^j * 5^k を取る値の確率/場合の数 のようなDPは組めない。きっと約数列挙してdict管理がよいだろう。 遷移が難しいな。状態をハッシュで管理して、定期的に呼び出す感じかな。 意外と重実装。 ''' #素因数分解し、(素因数,次数)の順に格納したリストを返す def Soinsu(CheckNumber): SoinsuList=[] for Soinsu in range(2,CheckNumber): if Soinsu*Soinsu>CheckNumber:break if CheckNumber%Soinsu!=0:continue SoinsuCount=0 while CheckNumber%Soinsu==0:SoinsuCount+=1;CheckNumber//=Soinsu SoinsuList.append((Soinsu,SoinsuCount)) if CheckNumber!=1:SoinsuList.append((CheckNumber,1)) return SoinsuList f=lambda:list(map(int,input().split())) #入力受取り Kを素因数分解し、Kの素因数でAを割る N,K=f(); A=f(); P=Soinsu(K); Aexp=[]; MOD=998244353 for num in A: fact=[0]*len(P) for pos,(prime,exp) in enumerate(P): while num%prime==0 and exp>0: num//=prime; fact[pos]+=1; exp-=1 Aexp.append(fact) #手動で冪乗数リストからハッシュに変換する関数を定義 base=[1]; E=[P[i][1] for i in range(len(P))] for exp in E[:-1]: base.append(base[-1]*(exp+1)) hash=lambda T: sum(base[i]*T[i] for i in range(len(T))) rev =lambda H: tuple([H%base[i]//base[i-1] for i in range(1,len(base))]+[H//base[-1]]) Max=base[-1]*(E[-1]+1); HtoT={i:rev(i) for i in range(Max)} #DP[x][S]: A[i:x-1]まで考慮したとき、約数のハッシュ値がSとなる場合の数 DP=[[0]*Max for x in range(N+1)]; DP[0][0]=1 for x,i in enumerate(range(N),start=1): for S in range(Max): DP[x][S]+=DP[x-1][S]; DP[x][S]%=MOD T=HtoT[S]; U=hash([min(E[y],T[y]+Aexp[i][y]) for y in range(len(T))]) DP[x][U]+=DP[x-1][S]; DP[x][U]%=MOD print(DP[-1][-1])