結果
問題 | No.1752 Up-Down Tree |
ユーザー | vwxyz |
提出日時 | 2023-05-25 06:03:08 |
言語 | PyPy3 (7.3.15) |
結果 |
AC
|
実行時間 | 563 ms / 2,000 ms |
コード長 | 7,652 bytes |
コンパイル時間 | 285 ms |
コンパイル使用メモリ | 82,372 KB |
実行使用メモリ | 130,444 KB |
最終ジャッジ日時 | 2024-06-06 12:01:14 |
合計ジャッジ時間 | 9,660 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 383 ms
124,596 KB |
testcase_01 | AC | 371 ms
124,208 KB |
testcase_02 | AC | 359 ms
130,420 KB |
testcase_03 | AC | 377 ms
130,444 KB |
testcase_04 | AC | 454 ms
124,464 KB |
testcase_05 | AC | 452 ms
124,216 KB |
testcase_06 | AC | 439 ms
124,592 KB |
testcase_07 | AC | 448 ms
124,548 KB |
testcase_08 | AC | 321 ms
107,704 KB |
testcase_09 | AC | 469 ms
118,676 KB |
testcase_10 | AC | 146 ms
89,216 KB |
testcase_11 | AC | 144 ms
89,320 KB |
testcase_12 | AC | 146 ms
88,960 KB |
testcase_13 | AC | 398 ms
104,272 KB |
testcase_14 | AC | 424 ms
105,360 KB |
testcase_15 | AC | 299 ms
95,228 KB |
testcase_16 | AC | 431 ms
105,472 KB |
testcase_17 | AC | 395 ms
101,888 KB |
testcase_18 | AC | 563 ms
119,056 KB |
testcase_19 | AC | 557 ms
118,916 KB |
testcase_20 | AC | 142 ms
88,960 KB |
testcase_21 | AC | 143 ms
89,356 KB |
ソースコード
import bisect import copy import decimal import fractions import heapq import itertools import math import random import sys import time from collections import Counter,deque,defaultdict from functools import lru_cache,reduce from heapq import heappush,heappop,heapify,heappushpop,_heappop_max,_heapify_max def _heappush_max(heap,item): heap.append(item) heapq._siftdown_max(heap, 0, len(heap)-1) def _heappushpop_max(heap, item): if heap and item < heap[0]: item, heap[0] = heap[0], item heapq._siftup_max(heap, 0) return item from math import gcd as GCD read=sys.stdin.read readline=sys.stdin.readline readlines=sys.stdin.readlines write=sys.stdout.write class Graph: def __init__(self,V,edges=None,graph=None,directed=False,weighted=False,inf=float("inf")): self.V=V self.directed=directed self.weighted=weighted self.inf=inf if graph!=None: self.graph=graph self.edges=[] for i in range(self.V): if self.weighted: for j,d in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j,d)) else: for j in self.graph[i]: if self.directed or not self.directed and i<=j: self.edges.append((i,j)) else: self.edges=edges self.graph=[[] for i in range(self.V)] if weighted: for i,j,d in self.edges: self.graph[i].append((j,d)) if not self.directed: self.graph[j].append((i,d)) else: for i,j in self.edges: self.graph[i].append(j) if not self.directed: self.graph[j].append(i) def SIV_DFS(self,s,bipartite_graph=False,cycle_detection=False,directed_acyclic=False,euler_tour=False,linked_components=False,lowlink=False,parents=False,postorder=False,preorder=False,subtree_size=False,topological_sort=False,unweighted_dist=False,weighted_dist=False): seen=[False]*self.V finished=[False]*self.V if directed_acyclic or cycle_detection or topological_sort: dag=True if euler_tour: et=[] if linked_components: lc=[] if lowlink: order=[None]*self.V ll=[None]*self.V idx=0 if parents or cycle_detection or lowlink or subtree_size: ps=[None]*self.V if postorder or topological_sort: post=[] if preorder: pre=[] if subtree_size: ss=[1]*self.V if unweighted_dist or bipartite_graph: uwd=[self.inf]*self.V uwd[s]=0 if weighted_dist: wd=[self.inf]*self.V wd[s]=0 stack=[(s,0)] if self.weighted else [s] while stack: if self.weighted: x,d=stack.pop() else: x=stack.pop() if not seen[x]: seen[x]=True stack.append((x,d) if self.weighted else x) if euler_tour: et.append(x) if linked_components: lc.append(x) if lowlink: order[x]=idx ll[x]=idx idx+=1 if preorder: pre.append(x) for y in self.graph[x]: if self.weighted: y,d=y if not seen[y]: stack.append((y,d) if self.weighted else y) if parents or cycle_detection or lowlink or subtree_size: ps[y]=x if unweighted_dist or bipartite_graph: uwd[y]=uwd[x]+1 if weighted_dist: wd[y]=wd[x]+d elif not finished[y]: if (directed_acyclic or cycle_detection or topological_sort) and dag: dag=False if cycle_detection: cd=(y,x) elif not finished[x]: finished[x]=True if euler_tour: et.append(~x) if lowlink: bl=True for y in self.graph[x]: if self.weighted: y,d=y if ps[x]==y and bl: bl=False continue ll[x]=min(ll[x],order[y]) if x!=s: ll[ps[x]]=min(ll[ps[x]],ll[x]) if postorder or topological_sort: post.append(x) if subtree_size: for y in self.graph[x]: if self.weighted: y,d=y if y==ps[x]: continue ss[x]+=ss[y] if bipartite_graph: bg=[[],[]] for tpl in self.edges: x,y=tpl[:2] if self.weighted else tpl if uwd[x]==self.inf or uwd[y]==self.inf: continue if not uwd[x]%2^uwd[y]%2: bg=False break else: for x in range(self.V): if uwd[x]==self.inf: continue bg[uwd[x]%2].append(x) retu=() if bipartite_graph: retu+=(bg,) if cycle_detection: if dag: cd=[] else: y,x=cd cd=self.Route_Restoration(y,x,ps) retu+=(cd,) if directed_acyclic: retu+=(dag,) if euler_tour: retu+=(et,) if linked_components: retu+=(lc,) if lowlink: retu=(ll,) if parents: retu+=(ps,) if postorder: retu+=(post,) if preorder: retu+=(pre,) if subtree_size: retu+=(ss,) if topological_sort: if dag: tp_sort=post[::-1] else: tp_sort=[] retu+=(tp_sort,) if unweighted_dist: retu+=(uwd,) if weighted_dist: retu+=(wd,) if len(retu)==1: retu=retu[0] return retu N=int(readline()) edges=[] for n in range(N-1): A,B=map(int,readline().split()) A-=1;B-=1 edges.append((A,B)) G=Graph(N,edges=edges) dp=[None]*N parents,tour=G.SIV_DFS(0,parents=True,postorder=True) for x in tour: child=[y for y in G.graph[x] if y!=parents[x]] if child: ma=max(len(dp[y]) for y in child) for y in child: if len(dp[y])==ma: dp[x]=dp[y] break for y in child: if dp[x] is dp[y]: continue for c in dp[y]: _heappush_max(dp[x],c) if len(dp[x])>=2: c0,c1=_heappop_max(dp[x]),_heappop_max(dp[x]) if c0%2 or c1%2: _heappush_max(dp[x],c0+c1+1) else: _heappush_max(dp[x],c0+c1) _heappush_max(dp[x],1) else: dp[x][0]+=1 else: dp[x]=[1] ans=dp[0][0] print(ans)