結果

問題 No.2326 Factorial to the Power of Factorial to the...
ユーザー jupiro
提出日時 2023-05-28 13:38:44
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 3,278 bytes
コンパイル時間 1,862 ms
コンパイル使用メモリ 194,448 KB
最終ジャッジ日時 2025-02-13 10:03:27
ジャッジサーバーID
(参考情報)
judge4 / judge5
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using std::cin;
using std::cout;
using std::endl;
using ll = long long;
std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count());
template <class T> inline bool chmax(T &a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T> inline bool chmin(T &a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
const int inf = (int)1e9 + 7;
const long long INF = 1LL << 62;
template <int mod> struct ModInt {
int x;
ModInt() : x(0) {}
ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}
ModInt &operator+=(const ModInt &p) {
if ((x += p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator-=(const ModInt &p) {
if ((x += mod - p.x) >= mod)
x -= mod;
return *this;
}
ModInt &operator*=(const ModInt &p) {
x = (int)(1LL * x * p.x % mod);
return *this;
}
ModInt &operator/=(const ModInt &p) {
*this *= p.inverse();
return *this;
}
ModInt operator-() const { return ModInt(-x); }
ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }
ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }
ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }
ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }
bool operator==(const ModInt &p) const { return x == p.x; }
bool operator!=(const ModInt &p) const { return x != p.x; }
ModInt inverse() const {
int a = x, b = mod, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return ModInt(u);
}
ModInt pow(int64_t n) const {
ModInt ret(1), mul(x);
while (n > 0) {
if (n & 1)
ret *= mul;
mul *= mul;
n >>= 1;
}
return ret;
}
friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; }
friend std::istream &operator>>(std::istream &is, ModInt &a) {
int64_t t;
is >> t;
a = ModInt<mod>(t);
return (is);
}
static int get_mod() { return mod; }
};
constexpr int mod = (int)1e9 + 7;
using mint = ModInt<mod>;
ll power(ll x, ll n, ll p) {
if (n == 0) {
return 1 % p;
}
if (n % 2 == 0) {
return power(x * x % p, n / 2, p);
} else {
return x * power(x, n - 1, p) % p;
}
}
void solve() {
ll n, P;
cin >> n >> P;
ll base = 0;
{
ll cur = P;
while (n >= cur) {
base += n / cur;
cur *= P;
}
}
ll n1 = 1, n2 = 1;
for (ll i = 1; i <= n; i++) {
n1 *= i;
n2 *= i;
n1 %= mod;
n2 %= (mod - 1);
}
n1 = power(n1, n2, mod);
cout << mint(base) * n1 << "\n";
}
int main() {
std::cin.tie(nullptr);
std::ios::sync_with_stdio(false);
int I_love_KKT89 = 1;
// cin >> I_love_KKT89;
for (int Case = 1; Case <= I_love_KKT89; ++Case) {
// cout << "Case #" << Case << ": ";
solve();
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0