結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー |
|
提出日時 | 2023-05-28 13:38:44 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 3,278 bytes |
コンパイル時間 | 1,862 ms |
コンパイル使用メモリ | 194,448 KB |
最終ジャッジ日時 | 2025-02-13 10:03:27 |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>using std::cin;using std::cout;using std::endl;using ll = long long;std::mt19937 rnd(std::chrono::steady_clock::now().time_since_epoch().count());template <class T> inline bool chmax(T &a, T b) {if (a < b) {a = b;return 1;}return 0;}template <class T> inline bool chmin(T &a, T b) {if (a > b) {a = b;return 1;}return 0;}const int inf = (int)1e9 + 7;const long long INF = 1LL << 62;template <int mod> struct ModInt {int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if ((x += p.x) >= mod)x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if ((x += mod - p.x) >= mod)x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int)(1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;std::swap(a -= t * b, b);std::swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const {ModInt ret(1), mul(x);while (n > 0) {if (n & 1)ret *= mul;mul *= mul;n >>= 1;}return ret;}friend std::ostream &operator<<(std::ostream &os, const ModInt &p) { return os << p.x; }friend std::istream &operator>>(std::istream &is, ModInt &a) {int64_t t;is >> t;a = ModInt<mod>(t);return (is);}static int get_mod() { return mod; }};constexpr int mod = (int)1e9 + 7;using mint = ModInt<mod>;ll power(ll x, ll n, ll p) {if (n == 0) {return 1 % p;}if (n % 2 == 0) {return power(x * x % p, n / 2, p);} else {return x * power(x, n - 1, p) % p;}}void solve() {ll n, P;cin >> n >> P;ll base = 0;{ll cur = P;while (n >= cur) {base += n / cur;cur *= P;}}ll n1 = 1, n2 = 1;for (ll i = 1; i <= n; i++) {n1 *= i;n2 *= i;n1 %= mod;n2 %= (mod - 1);}n1 = power(n1, n2, mod);cout << mint(base) * n1 << "\n";}int main() {std::cin.tie(nullptr);std::ios::sync_with_stdio(false);int I_love_KKT89 = 1;// cin >> I_love_KKT89;for (int Case = 1; Case <= I_love_KKT89; ++Case) {// cout << "Case #" << Case << ": ";solve();}return 0;}