結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー | suisen |
提出日時 | 2023-05-28 14:03:46 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 10 ms / 2,000 ms |
コード長 | 38,107 bytes |
コンパイル時間 | 3,402 ms |
コンパイル使用メモリ | 321,020 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-08 04:36:42 |
合計ジャッジ時間 | 4,188 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 10 ms
5,376 KB |
testcase_02 | AC | 4 ms
5,376 KB |
testcase_03 | AC | 8 ms
5,376 KB |
testcase_04 | AC | 6 ms
5,376 KB |
testcase_05 | AC | 5 ms
5,376 KB |
testcase_06 | AC | 7 ms
5,376 KB |
testcase_07 | AC | 9 ms
5,376 KB |
testcase_08 | AC | 9 ms
5,376 KB |
testcase_09 | AC | 9 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 3 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 5 ms
5,376 KB |
testcase_14 | AC | 8 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 8 ms
5,376 KB |
testcase_18 | AC | 4 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 1 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> #ifdef _MSC_VER # include <intrin.h> #else # include <x86intrin.h> #endif #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long int> { using type = __uint128_t; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; template <typename T, typename = void> struct rec_value_type { using type = T; }; template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> { using type = typename rec_value_type<typename T::value_type>::type; }; template <typename T> using rec_value_type_t = typename rec_value_type<T>::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>; // ! macros (internal) #define DETAIL_OVERLOAD2(_1,_2,name,...) name #define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name #define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name #define DETAIL_REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s)) #define DETAIL_REP3(i,l,r) DETAIL_REP4(i,l,r,1) #define DETAIL_REP2(i,n) DETAIL_REP3(i,0,n) #define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s)) #define DETAIL_REPINF2(i,l) DETAIL_REPINF3(i,l,1) #define DETAIL_REPINF1(i) DETAIL_REPINF2(i,0) #define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define DETAIL_RREP3(i,l,r) DETAIL_RREP4(i,l,r,1) #define DETAIL_RREP2(i,n) DETAIL_RREP3(i,0,n) #define DETAIL_CAT_I(a, b) a##b #define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b) #define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__) // ! macros #define REP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4 , DETAIL_REP3 , DETAIL_REP2 )(__VA_ARGS__) #define RREP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4 , DETAIL_RREP3 , DETAIL_RREP2 )(__VA_ARGS__) #define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__) #define LOOP(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) --> 0;) #define ALL(iterable) std::begin(iterable), std::end(iterable) #define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! debug #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template <class T, class... Args> void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first); ((std::cerr << ", " << std::forward<Args>(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template <typename T, typename U> std::ostream& operator<<(std::ostream& out, const std::pair<T, U>& a) { return out << a.first << ' ' << a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return out; else { out << std::get<N>(a); if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) out << ' '; return operator<<<N + 1>(out, a); } } // vector template <typename T> std::ostream& operator<<(std::ostream& out, const std::vector<T>& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template <typename T, size_t N> std::ostream& operator<<(std::ostream& out, const std::array<T, N>& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template <typename Head, typename... Tail> inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t stoi128(const std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t stou128(const std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = stoi128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = stou128(s); return in; } // pair template <typename T, typename U> std::istream& operator>>(std::istream& in, std::pair<T, U>& a) { return in >> a.first >> a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::istream& operator>>(std::istream& in, std::tuple<Args...>& a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return in; else return operator>><N + 1>(in >> std::get<N>(a), a); } // vector template <typename T> std::istream& operator>>(std::istream& in, std::vector<T>& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template <typename T, size_t N> std::istream& operator>>(std::istream& in, std::array<T, N>& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template <typename ...Args> void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1<bool>(bool n) { return -int(n) | 1; } // Returns floor(x / y) template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; } template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); } template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template <typename T, typename Comparator> auto priqueue_comp(const Comparator comparator) { return std::priority_queue<T, std::vector<T>, Comparator>(comparator); } template <typename Container> void sort_unique_erase(Container& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <typename InputIterator, typename BiConsumer> auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template <typename Container, typename BiConsumer> auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } // x <- max(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num != -1) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<T> digits_low_to_high(T val, T base = 10) { std::vector<T> res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<T> digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template <typename T> std::string join(const std::vector<T>& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } template <typename Func, typename Seq> auto transform_to_vector(const Func &f, const Seq &s) { std::vector<std::invoke_result_t<Func, typename Seq::value_type>> v; v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f); return v; } template <typename T, typename Seq> auto copy_to_vector(const Seq &s) { std::vector<T> v; v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v)); return v; } template <typename Seq> Seq concat(Seq s, const Seq &t) { s.reserve(std::size(s) + std::size(t)); std::copy(std::begin(t), std::end(t), std::back_inserter(s)); return s; } template <typename Seq> std::vector<Seq> split(const Seq s, typename Seq::value_type delim) { std::vector<Seq> res; for (auto itl = std::begin(s), itr = itl;; itl = ++itr) { while (itr != std::end(s) and *itr != delim) ++itr; res.emplace_back(itl, itr); if (itr == std::end(s)) return res; } } int digit_to_int(char c) { return c - '0'; } int lowercase_to_int(char c) { return c - 'a'; } int uppercase_to_int(char c) { return c - 'A'; } std::vector<int> digit_str_to_ints(const std::string &s) { return transform_to_vector(digit_to_int, s); } std::vector<int> lowercase_str_to_ints(const std::string &s) { return transform_to_vector(lowercase_to_int, s); } std::vector<int> uppercase_str_to_ints(const std::string &s) { return transform_to_vector(uppercase_to_int, s); } const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include <atcoder/modint> using mint = atcoder::modint1000000007; namespace atcoder { std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } } // namespace atcoder #include <numeric> #include <optional> #include <cmath> #include <iostream> #include <random> #include <utility> #include <array> #include <cassert> #include <cstdint> #include <iterator> #include <tuple> namespace suisen { namespace internal::montgomery { template <typename Int, typename DInt> struct Montgomery { private: static constexpr uint32_t bits = std::numeric_limits<Int>::digits; static constexpr Int mask = ~Int(0); // R = 2**32 or 2**64 // 1. N is an odd number // 2. N < R // 3. gcd(N, R) = 1 // 4. R * R2 - N * N2 = 1 // 5. 0 < R2 < N // 6. 0 < N2 < R Int N, N2, R2; // RR = R * R (mod N) Int RR; public: constexpr Montgomery() = default; explicit constexpr Montgomery(Int N) : N(N), N2(calcN2(N)), R2(calcR2(N, N2)), RR(calcRR(N)) { assert(N & 1); } // @returns t * R (mod N) constexpr Int make(Int t) const { return reduce(static_cast<DInt>(t) * RR); } // @returns T * R^(-1) (mod N) constexpr Int reduce(DInt T) const { // 0 <= T < RN // Note: // 1. m = T * N2 (mod R) // 2. 0 <= m < R DInt m = modR(static_cast<DInt>(modR(T)) * N2); // Note: // T + m * N = T + T * N * N2 = T + T * (R * R2 - 1) = 0 (mod R) // => (T + m * N) / R is an integer. // => t * R = T + m * N = T (mod N) // => t = T R^(-1) (mod N) DInt t = divR(T + m * N); // Note: // 1. 0 <= T < RN // 2. 0 <= mN < RN (because 0 <= m < R) // => 0 <= T + mN < 2RN // => 0 <= t < 2N return t >= N ? t - N : t; } constexpr Int add(Int A, Int B) const { return (A += B) >= N ? A - N : A; } constexpr Int sub(Int A, Int B) const { return (A -= B) < 0 ? A + N : A; } constexpr Int mul(Int A, Int B) const { return reduce(static_cast<DInt>(A) * B); } constexpr Int div(Int A, Int B) const { return reduce(static_cast<DInt>(A) * inv(B)); } constexpr Int inv(Int A) const; // TODO: Implement constexpr Int pow(Int A, long long b) const { Int P = make(1); for (; b; b >>= 1) { if (b & 1) P = mul(P, A); A = mul(A, A); } return P; } private: static constexpr Int divR(DInt t) { return t >> bits; } static constexpr Int modR(DInt t) { return t & mask; } static constexpr Int calcN2(Int N) { // - N * N2 = 1 (mod R) // N2 = -N^{-1} (mod R) // calculates N^{-1} (mod R) by Newton's method DInt invN = N; // = N^{-1} (mod 2^2) for (uint32_t cur_bits = 2; cur_bits < bits; cur_bits *= 2) { // loop invariant: invN = N^{-1} (mod 2^cur_bits) // x = a^{-1} mod m => x(2-ax) = a^{-1} mod m^2 because: // ax = 1 (mod m) // => (ax-1)^2 = 0 (mod m^2) // => 2ax - a^2x^2 = 1 (mod m^2) // => a(x(2-ax)) = 1 (mod m^2) invN = modR(invN * modR(2 - N * invN)); } assert(modR(N * invN) == 1); return modR(-invN); } static constexpr Int calcR2(Int N, Int N2) { // R * R2 - N * N2 = 1 // => R2 = (1 + N * N2) / R return divR(1 + static_cast<DInt>(N) * N2); } static constexpr Int calcRR(Int N) { return -DInt(N) % N; } }; } // namespace internal::montgomery using Montgomery32 = internal::montgomery::Montgomery<uint32_t, uint64_t>; using Montgomery64 = internal::montgomery::Montgomery<uint64_t, __uint128_t>; } // namespace suisen namespace suisen::miller_rabin { namespace internal { constexpr uint64_t THRESHOLD_1 = 341531ULL; constexpr uint64_t BASE_1[]{ 9345883071009581737ULL }; constexpr uint64_t THRESHOLD_2 = 1050535501ULL; constexpr uint64_t BASE_2[]{ 336781006125ULL, 9639812373923155ULL }; constexpr uint64_t THRESHOLD_3 = 350269456337ULL; constexpr uint64_t BASE_3[]{ 4230279247111683200ULL, 14694767155120705706ULL, 16641139526367750375ULL }; constexpr uint64_t THRESHOLD_4 = 55245642489451ULL; constexpr uint64_t BASE_4[]{ 2ULL, 141889084524735ULL, 1199124725622454117ULL, 11096072698276303650ULL }; constexpr uint64_t THRESHOLD_5 = 7999252175582851ULL; constexpr uint64_t BASE_5[]{ 2ULL, 4130806001517ULL, 149795463772692060ULL, 186635894390467037ULL, 3967304179347715805ULL }; constexpr uint64_t THRESHOLD_6 = 585226005592931977ULL; constexpr uint64_t BASE_6[]{ 2ULL, 123635709730000ULL, 9233062284813009ULL, 43835965440333360ULL, 761179012939631437ULL, 1263739024124850375ULL }; constexpr uint64_t BASE_7[]{ 2U, 325U, 9375U, 28178U, 450775U, 9780504U, 1795265022U }; template <auto BASE, std::size_t SIZE> constexpr bool miller_rabin(uint64_t n) { if (n == 2 or n == 3 or n == 5 or n == 7) return true; if (n <= 1 or n % 2 == 0 or n % 3 == 0 or n % 5 == 0 or n % 7 == 0) return false; if (n < 121) return true; const uint32_t s = __builtin_ctzll(n - 1); // >= 1 const uint64_t d = (n - 1) >> s; const Montgomery64 mg{ n }; const uint64_t one = mg.make(1), minus_one = mg.make(n - 1); for (std::size_t i = 0; i < SIZE; ++i) { uint64_t a = BASE[i] % n; if (a == 0) continue; uint64_t Y = mg.pow(mg.make(a), d); if (Y == one) continue; for (uint32_t r = 0;; ++r, Y = mg.mul(Y, Y)) { // Y = a^(d 2^r) if (Y == minus_one) break; if (r == s - 1) return false; } } return true; } } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> constexpr bool is_prime(T n) { if constexpr (std::is_signed_v<T>) { assert(n >= 0); } const std::make_unsigned_t<T> n_unsigned = n; assert(n_unsigned <= std::numeric_limits<uint64_t>::max()); // n < 2^64 using namespace internal; if (n_unsigned < THRESHOLD_1) return miller_rabin<BASE_1, 1>(n_unsigned); if (n_unsigned < THRESHOLD_2) return miller_rabin<BASE_2, 2>(n_unsigned); if (n_unsigned < THRESHOLD_3) return miller_rabin<BASE_3, 3>(n_unsigned); if (n_unsigned < THRESHOLD_4) return miller_rabin<BASE_4, 4>(n_unsigned); if (n_unsigned < THRESHOLD_5) return miller_rabin<BASE_5, 5>(n_unsigned); if (n_unsigned < THRESHOLD_6) return miller_rabin<BASE_6, 6>(n_unsigned); return miller_rabin<BASE_7, 7>(n_unsigned); } } // namespace suisen::miller_rabin #include <vector> namespace suisen::internal::sieve { constexpr std::uint8_t K = 8; constexpr std::uint8_t PROD = 2 * 3 * 5; constexpr std::uint8_t RM[K] = { 1, 7, 11, 13, 17, 19, 23, 29 }; constexpr std::uint8_t DR[K] = { 6, 4, 2, 4, 2, 4, 6, 2 }; constexpr std::uint8_t DF[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 }, { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 }, { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 }, }; constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 }; constexpr std::uint8_t DFP[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 8 }, { 8, 8, 8, 0, 8, 8, 8, 8 }, { 16, 16, 0, 16, 0, 16, 16, 8 }, { 24, 8, 8, 16, 8, 8, 24, 8 }, { 24, 24, 8, 16, 8, 24, 24, 8 }, { 32, 16, 16, 16, 16, 16, 32, 8 }, { 40, 24, 8, 32, 8, 24, 40, 8 }, { 48, 32, 16, 32, 16, 32, 48, 8 }, }; constexpr std::uint8_t MASK[K][K] = { { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 }, { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 }, { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 }, { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }, }; constexpr std::uint8_t OFFSET[K][K] = { { 0, 1, 2, 3, 4, 5, 6, 7, }, { 1, 5, 4, 0, 7, 3, 2, 6, }, { 2, 4, 0, 6, 1, 7, 3, 5, }, { 3, 0, 6, 5, 2, 1, 7, 4, }, { 4, 7, 1, 2, 5, 6, 0, 3, }, { 5, 3, 7, 1, 6, 0, 4, 2, }, { 6, 2, 3, 7, 0, 4, 5, 1, }, { 7, 6, 5, 4, 3, 2, 1, 0, }, }; constexpr std::uint8_t mask_to_index(const std::uint8_t bits) { switch (bits) { case 1 << 0: return 0; case 1 << 1: return 1; case 1 << 2: return 2; case 1 << 3: return 3; case 1 << 4: return 4; case 1 << 5: return 5; case 1 << 6: return 6; case 1 << 7: return 7; default: assert(false); } } } // namespace suisen::internal::sieve namespace suisen { template <unsigned int N> class SimpleSieve { private: static constexpr unsigned int siz = N / internal::sieve::PROD + 1; static std::uint8_t flag[siz]; public: SimpleSieve() { using namespace internal::sieve; flag[0] |= 1; unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) { const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp]; unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD; for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) { flag[kr] |= MASK[mp][mq]; } } } } std::vector<int> prime_list(unsigned int max_val = N) const { using namespace internal::sieve; std::vector<int> res { 2, 3, 5 }; res.reserve(max_val / 25); for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) { for (uint8_t f = ~flag[i]; f;) { uint8_t g = f & -f; res.push_back(offset + RM[mask_to_index(g)]); f ^= g; } } while (res.size() and (unsigned int) res.back() > max_val) res.pop_back(); return res; } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0; case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0; case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0; case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0; case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0; case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0; case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0; case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0; default: return false; } } } }; template <unsigned int N> std::uint8_t SimpleSieve<N>::flag[SimpleSieve<N>::siz]; template <unsigned int N> class Sieve { private: static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD; static unsigned int pf[base_max + internal::sieve::K]; public: Sieve() { using namespace internal::sieve; pf[0] = 1; unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { const int base_i = kp * K, base_act_i = kp * PROD; for (int mp = 0; mp < K; ++mp) { const int m = RM[mp], i = base_i + mp; if (pf[i] == 0) { unsigned int act_i = base_act_i + m; unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K; for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) { pf[base_k + OFFSET[mp][mq]] = act_i; } } } } } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return pf[p / PROD * K + 0] == 0; case RM[1]: return pf[p / PROD * K + 1] == 0; case RM[2]: return pf[p / PROD * K + 2] == 0; case RM[3]: return pf[p / PROD * K + 3] == 0; case RM[4]: return pf[p / PROD * K + 4] == 0; case RM[5]: return pf[p / PROD * K + 5] == 0; case RM[6]: return pf[p / PROD * K + 6] == 0; case RM[7]: return pf[p / PROD * K + 7] == 0; default: return false; } } } int prime_factor(const unsigned int p) const { using namespace internal::sieve; switch (p % PROD) { case 0: case 2: case 4: case 6: case 8: case 10: case 12: case 14: case 16: case 18: case 20: case 22: case 24: case 26: case 28: return 2; case 3: case 9: case 15: case 21: case 27: return 3; case 5: case 25: return 5; case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p; case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p; case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p; case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p; case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p; case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p; case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p; case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p; default: assert(false); } } /** * Returns a vector of `{ prime, index }`. */ std::vector<std::pair<int, int>> factorize(unsigned int n) const { assert(0 < n and n <= N); std::vector<std::pair<int, int>> prime_powers; while (n > 1) { int p = prime_factor(n), c = 0; do { n /= p, ++c; } while (n % p == 0); prime_powers.emplace_back(p, c); } return prime_powers; } /** * Returns the divisors of `n`. * It is NOT guaranteed that the returned vector is sorted. */ std::vector<int> divisors(unsigned int n) const { assert(0 < n and n <= N); std::vector<int> divs { 1 }; for (auto [prime, index] : factorize(n)) { int sz = divs.size(); for (int i = 0; i < sz; ++i) { int d = divs[i]; for (int j = 0; j < index; ++j) { divs.push_back(d *= prime); } } } return divs; } }; template <unsigned int N> unsigned int Sieve<N>::pf[Sieve<N>::base_max + internal::sieve::K]; } // namespace suisen namespace suisen::fast_factorize { namespace internal { template <typename T> constexpr int floor_log2(T n) { int i = 0; while (n) n >>= 1, ++i; return i - 1; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> T pollard_rho(const T n) { using M = safely_multipliable_t<T>; const T m = T(1) << (floor_log2(n) / 5); static std::mt19937_64 rng{std::random_device{}()}; std::uniform_int_distribution<T> dist(0, n - 1); // const Montgomery64 mg{n}; while (true) { T c = dist(rng); auto f = [&](T x) -> T { return (M(x) * x + c) % n; }; T x, y = 2, ys, q = 1, g = 1; for (T r = 1; g == 1; r <<= 1) { x = y; for (T i = 0; i < r; ++i) y = f(y); for (T k = 0; k < r and g == 1; k += m) { ys = y; for (T i = 0; i < std::min(m, r - k); ++i) y = f(y), q = M(q) * (x > y ? x - y : y - x) % n; g = std::gcd(q, n); } } if (g == n) { g = 1; while (g == 1) ys = f(ys), g = std::gcd(x > ys ? x - ys : ys - x, n); } if (g < n) { if (miller_rabin::is_prime(g)) return g; if (T d = n / g; miller_rabin::is_prime(d)) return d; return pollard_rho(g); } } } } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<std::pair<T, int>> factorize(T n) { static constexpr int threshold = 1000000; static Sieve<threshold> sieve; std::vector<std::pair<T, int>> res; if (n <= threshold) { for (auto [p, q] : sieve.factorize(n)) res.emplace_back(p, q); return res; } if ((n & 1) == 0) { int q = 0; do ++q, n >>= 1; while ((n & 1) == 0); res.emplace_back(2, q); } for (T p = 3; p * p <= n; p += 2) { if (p >= 101 and n >= 1 << 20) { while (n > 1) { if (miller_rabin::is_prime(n)) { res.emplace_back(std::exchange(n, 1), 1); } else { p = internal::pollard_rho(n); int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } break; } if (n % p == 0) { int q = 0; do ++q, n /= p; while (n % p == 0); res.emplace_back(p, q); } } if (n > 1) res.emplace_back(n, 1); return res; } } // namespace suisen::fast_factorize /** * @brief $a \uparrow \uparrow b \pmod{m}$ */ namespace suisen { namespace internal::tetration_mod { constexpr int max_value = std::numeric_limits<int>::max(); int saturation_pow(int a, int b) { if (b >= 32) return max_value; long long res = 1, pow_a = a; for (; b; b >>= 1) { if (b & 1) res = std::min(res * pow_a, (long long) max_value); pow_a = std::min(pow_a * pow_a, (long long) max_value); } return res; } int saturation_tetration(int a, int b) { assert(a >= 2); if (b == 0) return 1; int exponent = 1; for (int i = 0; i < b and exponent != max_value; ++i) exponent = saturation_pow(a, exponent); return exponent; } int pow_mod(int a, int b, int m) { long long res = 1, pow_a = a; for (; b; b >>= 1) { if (b & 1) res = (res * pow_a) % m; pow_a = (pow_a * pow_a) % m; } return res; } } /** * @brief Calculates a↑↑b mod m (= a^(a^(a^...(b times)...)) mod m) * @param a base * @param b number of power operations * @param m mod * @return a↑↑b mod m */ int tetration_mod(int a, int b, int m) { using namespace internal::tetration_mod; if (m == 1) return 0; if (a == 0) return 1 ^ (b & 1); if (a == 1 or b == 0) return 1; int i0 = 0, m0 = m; for (int g = std::gcd(m0, a); g != 1; g = std::gcd(m0, g)) { m0 /= g, ++i0; } int phi = m0; for (auto [p, q] : fast_factorize::factorize(m0)) { phi /= p, phi *= p - 1; } int exponent = saturation_tetration(a, b - 1); if (exponent == max_value) { exponent = tetration_mod(a, b - 1, phi); if (i0 > exponent) { exponent += (((i0 - exponent) + phi - 1) / phi) * phi; } } else if (i0 <= exponent) { exponent -= ((exponent - i0) / phi) * phi; } return pow_mod(a, exponent, m); } } int main() { int n, p; read(n, p); mint t = 0; for (int v = n / p; v; v /= p) { t += v; } debug(t); mint u = 1; REP(i, n) u *= i + 1; REP(i, n) { u = u.pow(i + 1); } print(t * u); return 0; }