結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー |
|
提出日時 | 2023-05-28 14:15:15 |
言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 5 ms / 2,000 ms |
コード長 | 3,689 bytes |
コンパイル時間 | 1,789 ms |
コンパイル使用メモリ | 168,912 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-27 00:10:54 |
合計ジャッジ時間 | 2,668 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>using namespace std;using ll = long long;using pll = pair<ll, ll>;#define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i)#define rep(i, n) drep(i, 0, n - 1)#define all(a) (a).begin(), (a).end()#define pb push_back#define fi first#define se secondmt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());const ll MOD1000000007 = 1000000007;const ll MOD998244353 = 998244353;const ll MOD[3] = {999727999, 1070777777, 1000000007};const ll LINF = 1LL << 60;const int IINF = 1 << 30 - 1;template<typename T> struct Edge{int to; T w;Edge(int to_, T w_=1){to = to_;w=w_;}};template<typename T> using Tree = vector<vector<Edge<T>>>;template<typename T> using Graph = vector<vector<Edge<T>>>;/* 容量&重み付きエッジ for Dinic */template<typename T> struct REdge{int to;T cap;T cost;int rev;REdge(int to_, T cap_, T cost_=1){to = to_;cap = cap_;cost = cost_;}REdge(int to_, T cap_, T cost_, int rev_){to = to_;cap = cap_;cost = cost_;rev = rev_;}};/* 残余グラフ for Dinic */template<typename T> using RGraph = vector<vector<REdge<T>>>;template<long long mod>class modint{long long x;public:modint(long long x=0) : x((x%mod+mod)%mod) {}modint operator-() const {return modint(-x);}bool operator==(const modint& a){if(x == a) return true;else return false;}bool operator==(long long a){if(x == a) return true;else return false;}bool operator!=(const modint& a){if(x != a) return true;else return false;}bool operator!=(long long a){if(x != a) return true;else return false;}modint& operator+=(const modint& a) {if ((x += a.x) >= mod) x -= mod;return *this;}modint& operator-=(const modint& a) {if ((x += mod-a.x) >= mod) x -= mod;return *this;}modint& operator*=(const modint& a) {(x *= a.x) %= mod;return *this;}modint operator+(const modint& a) const {modint res(*this);return res+=a;}modint operator-(const modint& a) const {modint res(*this);return res-=a;}modint operator*(const modint& a) const {modint res(*this);return res*=a;}modint pow(long long t) const {if (!t) return 1;modint a = pow(t>>1);a *= a;if (t&1) a *= *this;return a;}// for prime modmodint inv() const {return pow(mod-2);}modint& operator/=(const modint& a) {return (*this) *= a.inv();}modint operator/(const modint& a) const {modint res(*this);return res/=a;}friend std::istream& operator>>(std::istream& is, modint& m) noexcept {is >> m.x;m.x %= mod;if (m.x < 0) m.x += mod;return is;}friend ostream& operator<<(ostream& os, const modint& m){os << m.x;return os;}};using mint = modint<MOD1000000007>;int main(){cin.tie(nullptr);ios::sync_with_stdio(false);ll n, p; cin >> n >> p;mint ans = 0;ll sn = n;while(sn){ans += sn/p;sn/=p;}if(ans == 0){cout << ans << endl;return 0;}vector<mint> fac(n+1, 1);for(ll i=2; i<=n; i++) fac[i] = fac[i-1] * i;ll po = 1;for(ll i=2; i<=n; i++) po = (po * i) %(MOD1000000007-1);mint prod = fac[n].pow(po);cout << ans * prod << endl;}