結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー | umimel |
提出日時 | 2023-05-28 14:15:15 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 3,689 bytes |
コンパイル時間 | 1,574 ms |
コンパイル使用メモリ | 169,284 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-08 05:01:09 |
合計ジャッジ時間 | 2,285 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 3 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 3 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 1 ms
5,376 KB |
testcase_07 | AC | 3 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 3 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 3 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; using pll = pair<ll, ll>; #define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i) #define rep(i, n) drep(i, 0, n - 1) #define all(a) (a).begin(), (a).end() #define pb push_back #define fi first #define se second mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count()); const ll MOD1000000007 = 1000000007; const ll MOD998244353 = 998244353; const ll MOD[3] = {999727999, 1070777777, 1000000007}; const ll LINF = 1LL << 60; const int IINF = 1 << 30 - 1; template<typename T> struct Edge{ int to; T w; Edge(int to_, T w_=1){ to = to_; w=w_; } }; template<typename T> using Tree = vector<vector<Edge<T>>>; template<typename T> using Graph = vector<vector<Edge<T>>>; /* 容量&重み付きエッジ for Dinic */ template<typename T> struct REdge{ int to; T cap; T cost; int rev; REdge(int to_, T cap_, T cost_=1){ to = to_; cap = cap_; cost = cost_; } REdge(int to_, T cap_, T cost_, int rev_){ to = to_; cap = cap_; cost = cost_; rev = rev_; } }; /* 残余グラフ for Dinic */ template<typename T> using RGraph = vector<vector<REdge<T>>>; template<long long mod> class modint{ long long x; public: modint(long long x=0) : x((x%mod+mod)%mod) {} modint operator-() const { return modint(-x); } bool operator==(const modint& a){ if(x == a) return true; else return false; } bool operator==(long long a){ if(x == a) return true; else return false; } bool operator!=(const modint& a){ if(x != a) return true; else return false; } bool operator!=(long long a){ if(x != a) return true; else return false; } modint& operator+=(const modint& a) { if ((x += a.x) >= mod) x -= mod; return *this; } modint& operator-=(const modint& a) { if ((x += mod-a.x) >= mod) x -= mod; return *this; } modint& operator*=(const modint& a) { (x *= a.x) %= mod; return *this; } modint operator+(const modint& a) const { modint res(*this); return res+=a; } modint operator-(const modint& a) const { modint res(*this); return res-=a; } modint operator*(const modint& a) const { modint res(*this); return res*=a; } modint pow(long long t) const { if (!t) return 1; modint a = pow(t>>1); a *= a; if (t&1) a *= *this; return a; } // for prime mod modint inv() const { return pow(mod-2); } modint& operator/=(const modint& a) { return (*this) *= a.inv(); } modint operator/(const modint& a) const { modint res(*this); return res/=a; } friend std::istream& operator>>(std::istream& is, modint& m) noexcept { is >> m.x; m.x %= mod; if (m.x < 0) m.x += mod; return is; } friend ostream& operator<<(ostream& os, const modint& m){ os << m.x; return os; } }; using mint = modint<MOD1000000007>; int main(){ cin.tie(nullptr); ios::sync_with_stdio(false); ll n, p; cin >> n >> p; mint ans = 0; ll sn = n; while(sn){ ans += sn/p; sn/=p; } if(ans == 0){ cout << ans << endl; return 0; } vector<mint> fac(n+1, 1); for(ll i=2; i<=n; i++) fac[i] = fac[i-1] * i; ll po = 1; for(ll i=2; i<=n; i++) po = (po * i) %(MOD1000000007-1); mint prod = fac[n].pow(po); cout << ans * prod << endl; }