結果

問題 No.2326 Factorial to the Power of Factorial to the...
ユーザー umimel
提出日時 2023-05-28 14:15:15
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 5 ms / 2,000 ms
コード長 3,689 bytes
コンパイル時間 1,789 ms
コンパイル使用メモリ 168,912 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-12-27 00:10:54
合計ジャッジ時間 2,668 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using pll = pair<ll, ll>;
#define drep(i, cc, n) for (ll i = (cc); i <= (n); ++i)
#define rep(i, n) drep(i, 0, n - 1)
#define all(a) (a).begin(), (a).end()
#define pb push_back
#define fi first
#define se second
mt19937_64 rng(chrono::system_clock::now().time_since_epoch().count());
const ll MOD1000000007 = 1000000007;
const ll MOD998244353 = 998244353;
const ll MOD[3] = {999727999, 1070777777, 1000000007};
const ll LINF = 1LL << 60;
const int IINF = 1 << 30 - 1;
template<typename T> struct Edge{
int to; T w;
Edge(int to_, T w_=1){
to = to_;
w=w_;
}
};
template<typename T> using Tree = vector<vector<Edge<T>>>;
template<typename T> using Graph = vector<vector<Edge<T>>>;
/* & for Dinic */
template<typename T> struct REdge{
int to;
T cap;
T cost;
int rev;
REdge(int to_, T cap_, T cost_=1){
to = to_;
cap = cap_;
cost = cost_;
}
REdge(int to_, T cap_, T cost_, int rev_){
to = to_;
cap = cap_;
cost = cost_;
rev = rev_;
}
};
/* for Dinic */
template<typename T> using RGraph = vector<vector<REdge<T>>>;
template<long long mod>
class modint{
long long x;
public:
modint(long long x=0) : x((x%mod+mod)%mod) {}
modint operator-() const {
return modint(-x);
}
bool operator==(const modint& a){
if(x == a) return true;
else return false;
}
bool operator==(long long a){
if(x == a) return true;
else return false;
}
bool operator!=(const modint& a){
if(x != a) return true;
else return false;
}
bool operator!=(long long a){
if(x != a) return true;
else return false;
}
modint& operator+=(const modint& a) {
if ((x += a.x) >= mod) x -= mod;
return *this;
}
modint& operator-=(const modint& a) {
if ((x += mod-a.x) >= mod) x -= mod;
return *this;
}
modint& operator*=(const modint& a) {
(x *= a.x) %= mod;
return *this;
}
modint operator+(const modint& a) const {
modint res(*this);
return res+=a;
}
modint operator-(const modint& a) const {
modint res(*this);
return res-=a;
}
modint operator*(const modint& a) const {
modint res(*this);
return res*=a;
}
modint pow(long long t) const {
if (!t) return 1;
modint a = pow(t>>1);
a *= a;
if (t&1) a *= *this;
return a;
}
// for prime mod
modint inv() const {
return pow(mod-2);
}
modint& operator/=(const modint& a) {
return (*this) *= a.inv();
}
modint operator/(const modint& a) const {
modint res(*this);
return res/=a;
}
friend std::istream& operator>>(std::istream& is, modint& m) noexcept {
is >> m.x;
m.x %= mod;
if (m.x < 0) m.x += mod;
return is;
}
friend ostream& operator<<(ostream& os, const modint& m){
os << m.x;
return os;
}
};
using mint = modint<MOD1000000007>;
int main(){
cin.tie(nullptr);
ios::sync_with_stdio(false);
ll n, p; cin >> n >> p;
mint ans = 0;
ll sn = n;
while(sn){
ans += sn/p;
sn/=p;
}
if(ans == 0){
cout << ans << endl;
return 0;
}
vector<mint> fac(n+1, 1);
for(ll i=2; i<=n; i++) fac[i] = fac[i-1] * i;
ll po = 1;
for(ll i=2; i<=n; i++) po = (po * i) %(MOD1000000007-1);
mint prod = fac[n].pow(po);
cout << ans * prod << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0