結果

問題 No.2326 Factorial to the Power of Factorial to the...
ユーザー shirokamishirokami
提出日時 2023-05-28 14:20:39
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 4,032 bytes
コンパイル時間 8,146 ms
コンパイル使用メモリ 367,876 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-27 00:36:50
合計ジャッジ時間 8,935 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 2
other AC * 11 WA * 9
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/extc++.h>
using namespace std;
// using namespace __gnu_pbds;
// #include <boost/multiprecision/cpp_int.hpp>
// using Bint = boost::multiprecision::cpp_int;
#include <atcoder/all>
using namespace atcoder;
// https://atcoder.github.io/ac-library/production/document_ja/
typedef long long int ll;
typedef long double ld;
constexpr ll mod = 1e9+7;
constexpr ll INF = 9'223'372'036'854'775'807/10;
#define rep(i,n) for (ll i = 0; i < ll(n); ++i)
#define Rep(i,a,n) for (ll i = (a); i < ll(n); ++i)
#define All(a) (a).begin(),(a).end()
#define Pi acos(-1)
using V = vector<ll>;
using P = pair<ll,ll>;
vector<ll> dx = {1, 0, -1, 0, 1, 1, -1, -1};
vector<ll> dy = {0, 1, 0, -1, 1, -1, 1, -1};
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a=b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a=b; return 1; } return 0; }
struct Edge{ll to, cost;};
using Graph = vector<vector<Edge>>;
struct IoSetup {
  IoSetup() {
    cin.tie(nullptr);
    ios_base::sync_with_stdio(false);
    cout << setprecision(15) << fixed;
  }
} iosetup;
void print(vector<string> &v) {
  for (string s : v) {
    cout << s << '\n';
  }
}
template<typename T>
void print(vector<T> &v, int w = 0) {
  for (int i = 0; i < (int)v.size(); i++) {
    cout << right << setw(w) << v[i] << " \n"[i == (int)v.size() - 1];
  }
}
template<typename T>
void print(vector<vector<T>> &v, int w = 0) {
  for (int i = 0; i < (int)v.size(); i++) {
    print(v[i], w);
  }
}
template<typename T>
void print(const T& arg) {
  cout << arg << '\n';
}
template<typename T, typename... Args>
void print(const T& arg, const Args&... args) {
  cout << arg << ' ';
  print(args...);
}

__int128_t pow_mod_128(__int128_t A, __int128_t N, __int128_t M) {
    __int128_t res = 1 % M;
    A %= M;
    while (N) {
        if (N & 1) res = (res * A) % M;
        A = (A * A) % M;
        N >>= 1;
    }
    return res;
}

bool is_prime(long long N) {
  if (N <= 1) return false;
  if (N == 2) return true;
  if (N % 2 == 0) return false;
  vector<long long> A = {2, 325, 9375, 28178, 450775, 9780504, 1795265022};
  long long s = 0, d = N - 1;
  while (d % 2 == 0) {
    ++s;
    d >>= 1;
  }
  for (auto a : A) {
    if (a % N == 0) return true;
    long long t, x = pow_mod_128(a, d, N);
    if (x != 1) {
      for (t = 0; t < s; ++t) {
        if (x == N - 1) break;
        x = __int128_t(x) * x % N;
      }
      if (t == s) return false;
    }
  }
  return true;
}

long long pollard(long long N) {
  if (N % 2 == 0) return 2;
  if (is_prime(N)) return N;

  auto f = [&](long long x) -> long long {
    return (__int128_t(x) * x + 1) % N;
  };
  long long step = 0;
  while (true) {
    ++step;
    long long x = step, y = f(x);
    while (true) {
      long long p = gcd(y - x + N, N);
      if (p == 0 || p == N) break;
      if (p != 1) return p;
      x = f(x);
      y = f(f(y));
    }
  }
}

vector<long long> prime_factorize(long long N) {
  if (N == 1) return {};
  long long p = pollard(N);
  if (p == N) return {p};
  vector<long long> left = prime_factorize(p);
  vector<long long> right = prime_factorize(N / p);
  left.insert(left.end(), right.begin(), right.end());
  sort(left.begin(), left.end());
  return left;
}

vector<pair<long long, long long>> prime_factorize_pair(long long N) {
  vector<long long> left = prime_factorize(N);
  left.push_back(-1);
  vector<pair<long long, long long>> g;
  long long cnt = 1;
  for (long long i = 1; i < left.size(); i++) {
    if (left[i] == left[i-1]) {
      cnt++;
    }
    else {
      g.push_back({left[i-1], cnt});
      cnt = 1;
    }
  }
  return g;
}

using mint = modint1000000007;

int main() {
  ll n, p;
  cin >> n >> p;
  auto g = prime_factorize_pair(p);
  mint ans = 0;
  mint b = 1;
  rep(i,n) {
    b *= (i+1);
  }
  mint c = b.pow(b.val());
  rep(i, g.size()) {
    ll a = 0;
    ll pc = g[i].first;
    while (true) {
      a += n/pc;
      pc *= p;
      if (n/pc == 0) break;
    }
    ans += (a*c).val()/(g[i].second);
  }
  print(ans.val());
}
0