結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー | Etis |
提出日時 | 2023-05-28 14:39:21 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
RE
|
実行時間 | - |
コード長 | 7,759 bytes |
コンパイル時間 | 4,596 ms |
コンパイル使用メモリ | 270,856 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-06-08 05:55:17 |
合計ジャッジ時間 | 6,398 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
testcase_10 | RE | - |
testcase_11 | WA | - |
testcase_12 | RE | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | RE | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | RE | - |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
ソースコード
//#pragma GCC target("avx") //#pragma GCC optimize("Ofast") //#pragma GCC optimize("unroll-loops") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") #include <bits/stdc++.h> using namespace std; #include <atcoder/all> using namespace atcoder; //local debug #ifdef LOCAL #include <debug_print.hpp> #define debug(...) debug_print::multi_print(#__VA_ARGS__, __VA_ARGS__) #else #define debug(...) (static_cast<void>(0)) #endif #define overload4(a, b, c, d, e, ...) e //alias using uint = unsigned int; using ll = long long; using ull = unsigned long long; using ld = long double; using mint = modint998244353; using Mint = modint1000000007; //constants constexpr const long long MOD = 998244353; constexpr const long long MODM = 1000000007; constexpr const int INF = 1e9; constexpr const ll LINF = 1e18; //rep(for-loop) macro #define rep2(i, n) for(ll i = 0; i < n; i++) #define rep3(i, k, n) for(ll i = k; i < n; i++) #define rep4(i, k, n, a) for(ll i = k; i < n; i += a) #define rep(...) overload4(__VA_ARGS__, rep4, rep3, rep2)(__VA_ARGS__) #define rep1_2(i, n) for(ll i = 1; i <= n; i++) #define rep1_3(i, k, n) for(ll i = k; i <= n; i++) #define rep1_4(i, k, n, a) for(ll i = k; i <= n; i += a) #define rep1(...) overload4(__VA_ARGS__, rep1_4, rep1_3, rep1_2)(__VA_ARGS__) #define Rep2(i, n) for(ll i = n - 1; i >= 0; i--) #define Rep3(i, k, n) for(ll i = n - 1; i >= k; i--) #define Rep4(i, k, n, a) for(ll i = n - 1; i >= k; i -= a) #define Rep(...) overload4(__VA_ARGS__, Rep4, Rep3, Rep2)(__VA_ARGS__) #define Rep1_2(i, n) for(ll i = n; i >= 1; i--) #define Rep1_3(i, k, n) for(ll i = n; i >= k; i--) #define Rep1_4(i, k, n, a) for(ll i = n; i >= k; i -= a) #define Rep1(...) overload4(__VA_ARGS__, Rep1_4, Rep1_3, Rep1_2)(__VA_ARGS__) #define vfor(v, x) for(auto x : v) #define mfor(map) for(auto &[key, value] : map) //vector macro #define vvecc(T, name, n, m) vector<vector<T>> name(n, vector<T>(m)) #define vvec(T, name, n) vector<vector<T>> name(n) #define vvecs(T, name, n, m, s) vector<vector<T>> name(n, vector<T>(m, s)) #define all(x) begin(x), end(x) #define LB(v, x) distance((v).begin(), lower_bound(all(v), (x))) #define UB(v, x) distance((v).begin(), upper_bound(all(v), (x))) //data structure macro #define ef emplace_front #define eb emplace_back #define pf pop_front #define pb pop_back #define mp make_pair #define fi first #define se second #define mt make_tuple #define get(t, x) get<x - 1>(t) #define lb lower_bound #define ub upper_bound template<class T> using pq = priority_queue<T>; template<class T> using pqmin = priority_queue<T, vector<T>, greater<T>>; template<class T, class U> using pqp = priority_queue<pair<T, U>>; template<class T, class U> using pqpmin = priority_queue<pair<T, U>, vector<pair<T, U>>, greater<pair<T,U>>>; //output #define pl() cout << '\n' template<class T> void print(const T& a) {cout << a;} void printl(){} template<class T> void printl(const T& t){print(t); pl();} template<class Head, class... Tail> void printl(const Head& head, const Tail&... tail) {print(head); cout << " "; printl(tail...);} template<class T> void fin(const T& t) {printl(t); exit(0);} void Yes(bool a) {cout << (a ? "Yes" : "No") << '\n';} template<class T, class U> void Out2(bool a, T yes, U no) {if(a) printl(yes); else printl(no);} //functions int ctoi(char c) {return c - '0';} char to_char(int x) {return x + '0';} template<class... T> constexpr auto Emin(T... a) {return min(initializer_list<common_type_t<T...>>{a...});} template<class... T> constexpr auto Emax(T... a) {return max(initializer_list<common_type_t<T...>>{a...});} template<class T, class U> bool chmax(T &a, const U &b) {if (a < b) { a = b; return true;} return false;} template<class T, class U> bool chmin(T &a, const U &b) {if (a > b) { a = b; return true;} return false;} template<class T, class U> ll Epow(T x, U y) {ll ans = 1; for(int i = 0; i < y; i++) ans *= x; return ans;} template<class T, class U> ll Eceil(T x, U y) {return (ll)ceil((ld)x / (ld)y);} template<class T, class U> ll Efloor(T x, U y) {return (ll)floor((ld)x / (ld)y);} template<class T, class U> bool check_bit(T tar, U bit) {return ((tar & Epow(2, bit)) != 0);} /*Math Library<ACL>*/ //a ÷ bをmodで割った余り(modは素数) - O(log(mod)) ll div_mod(ll a, ll b, ll mod) {return (a * pow_mod(b, mod - 2, mod)) % mod;} //階乗 - O(n) ll factorial(ll n, ll mod) { ll ans = 1; for(ll i = n; i >= 2; i--) ans = (ans * i) % mod; return ans; }ll factorial(ll n) {return factorial(n, MOD);} //順列 - O(r) ll permutation(ll n, ll r, ll mod) { ll ans = 1; for(ll i = 0; i < r; i++) ans = (ans * (n - i)) % mod; return ans; }ll permutation(ll n, ll r) {return permutation(n, r, MOD);} //組み合わせ(modは素数) - O(min(r, n - r) + log(mod)) ll combination(ll n, ll r, ll mod) { r = min(r, n - r); if(r == 0) return 1; ll up = n; ll down = 1; for(int i = 1; i < r; i++) { up = (up * (n - i)) % mod; down = (down * (i + 1)) % mod; } return div_mod(up, down, mod); }ll combination(ll n, ll r) {return combination(n, r, MOD);} //nC0~nCrまでの列挙(modは素数) - O(rlog(mod)) vector<ll> getCombination_vec(ll n, ll r, ll mod) { vector<ll> ret(r + 1); ret[0] = 1; ll up = n; ll down = 1; ret[1] = div_mod(up, down, mod); for(int i = 1; i < r; i++) { up = (up * (n - i)) % mod; down = (down * (i + 1)) % mod; ret[i + 1] = div_mod(up, down, mod); } return ret; }vector<ll> getCombination_vec(ll n, ll r) {return getCombination_vec(n, r, MOD);} //素数判定 - O(√N) bool is_prime(ll N) { if (N == 1) return false; for (ll i = 2; i * i <= N; i++) { if (N % i == 0) return false; } return true; } //約数列挙 - O(√N) vector<ll> enum_divisors(ll N) { vector<ll> res; for (ll i = 1; i * i <= N; i++) { if (N % i == 0) { res.eb(i); if (N / i != i) res.eb(N / i); } } sort(all(res)); return res; } //素因数分解 - O(√N) vector<pair<ll, ll>> prime_factorize(ll N) { vector<pair<ll, ll>> res; for (ll a = 2; a * a <= N; a++) { if (N % a != 0) continue; ll ex = 0; while (N % a == 0) { ex++; N /= a; } res.eb(mp(a, ex)); } if (N != 1) res.eb(mp(N, 1)); return res; } //エラトステネスの篩 - O(NloglogN) vector<bool> Eratosthenes(ll N) { vector<bool> isprime(N + 1, true); isprime[0] = isprime[1] = false; for (ll p = 2; p <= N; p++) { if (!isprime[p]) continue; for (ll q = p * 2; q <= N; q += p) { isprime[q] = false; } } return isprime; } //N以下の素数を列挙 - O(NloglogN) vector<ll> getPrimes(ll N) { vector<bool> era = Eratosthenes(N); vector<ll> primes; for(ll i = 2; i <= N; i++) { if(era[i]) primes.eb(i); } return primes; } //--------------------------------------------------------------------------------------------------- int main() { ios::sync_with_stdio(false); cin.tie(0); cout << fixed << setprecision(10); ll N, P; cin >> N >> P; vector<ll> prime_cnt(N + 1, 0); rep1(i, 2, N) { auto ret = prime_factorize(i); rep(j, ret.size()) prime_cnt[ret[j].fi] += ret[j].se; } auto need = prime_factorize(P); ll div_cnt = LINF; rep(i, need.size()) { ll cur = prime_cnt[need[i].fi] / need[i].se; div_cnt = Emin(div_cnt, cur); debug(cur, div_cnt); } debug(prime_cnt, need, div_cnt); ll Nfac = factorial(N, MODM); ll r = pow_mod(Nfac, Nfac, MODM); Mint ans = div_cnt; ans *= r; printl(ans.val()); }