結果
| 問題 |
No.2326 Factorial to the Power of Factorial to the...
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-05-28 14:42:28 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 4,430 bytes |
| コンパイル時間 | 1,998 ms |
| コンパイル使用メモリ | 194,500 KB |
| 最終ジャッジ日時 | 2025-02-13 11:56:31 |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | WA * 2 |
| other | WA * 20 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
constexpr ll MOD = 1e9 + 7;
template<long long m, std::enable_if_t<(1 <= m)>* = nullptr>
struct ModInt {
public:
using value_type = unsigned long long;
using signed_value_type = std::make_signed_t<value_type>;
private:
value_type m_value = 0;
static constexpr value_type umod() noexcept { return static_cast<value_type>(m); }
public:
ModInt() = default;
ModInt(const ModInt&) = default;
ModInt(ModInt&&) noexcept = default;
constexpr ModInt(const signed_value_type x) noexcept : m_value((x % m + m) % m) {}
constexpr ModInt& operator =(const ModInt&) = default;
constexpr ModInt& operator =(ModInt&&) noexcept = default;
constexpr ModInt& operator =(const signed_value_type x) { m_value = (x % m + m) % m; return *this; }
inline constexpr value_type value() const noexcept { return m_value; }
explicit inline constexpr operator value_type() const noexcept { return m_value; }
explicit inline constexpr operator signed_value_type() const noexcept { return static_cast<signed_value_type>(m_value); }
explicit inline constexpr operator int() const noexcept { return static_cast<int>(m_value); }
static ModInt raw(const value_type& x) { ModInt tmp; tmp.m_value = x; return tmp; }
ModInt& operator++() { m_value++; if (m_value == umod()) m_value = 0; return *this; }
ModInt& operator--() { if (m_value == 0) m_value = umod(); m_value--; return *this; }
ModInt operator++(int) { ModInt tmp(*this); ++(*this); return tmp; }
ModInt operator--(int) { ModInt tmp(*this); --(*this); return tmp; }
ModInt& operator +=(const ModInt& rhs) { m_value += rhs.m_value; if (m_value >= umod()) m_value -= umod(); return *this; }
ModInt& operator -=(const ModInt& rhs) { m_value -= rhs.m_value; if (m_value >= umod()) m_value += umod(); return *this; }
ModInt& operator *=(const ModInt& rhs) { m_value = (m_value * rhs.m_value) % umod(); return *this; }
ModInt& operator /=(const ModInt& rhs) { return *this = *this * rhs.inv(); }
ModInt& operator ^=(const long long rhs) { return *this = pow(rhs); }
ModInt operator +() const { return *this; }
ModInt operator -() const { return ModInt() - *this; }
ModInt pow(long long n) const {
ModInt res(1), mul = *this;
while(n > 0) {
if (n & 1) res *= mul;
mul *= mul;
n >>= 1;
}
return res;
}
ModInt inv() const {
long long a = m_value, b = m, u = 1, v = 0;
while(b) {
long long t = a / b;
std::swap(a -= t * b, b);
std::swap(u -= t * v, v);
}
return ModInt(u);
}
friend inline constexpr ModInt operator +(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) += rhs; }
friend inline constexpr ModInt operator -(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) -= rhs; }
friend inline constexpr ModInt operator *(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) *= rhs; }
friend inline constexpr ModInt operator /(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) /= rhs; }
friend inline constexpr bool operator==(const ModInt& lhs, const ModInt& rhs) { return lhs.m_value == rhs.m_value; }
friend inline constexpr bool operator!=(const ModInt& lhs, const ModInt& rhs) { return !(lhs == rhs); }
friend inline std::ostream& operator <<(std::ostream& out, const ModInt& mint) { return out << mint.value(); }
friend inline std::istream& operator >>(std::istream& is, ModInt& mint) {
long long tmp;
is >> tmp;
mint = ModInt(tmp);
return is;
}
};
template<class T>
T Legendre(const long long n, const long long p) noexcept {
T res = 0;
long long q = p;
while (true) {
auto diff = n / q;
if (diff == 0) {
break;
}
res += diff;
q *= p;
}
return res;
}
template<class T>
T Factorial(long long n) {
T res = 1;
for (int i = 1; i <= n; i++) {
res *= i;
}
return res;
}
int main() {
using mint = ModInt<MOD>;
ll n, p;
cin >> n >> p;
auto k = Legendre<mint>(n, p);
auto e = Factorial<mint>(n);
ll a = 1;
for (int i = 1; i <= n; i++) {
a *= i;
a %= (MOD - 1);
}
cout << k << " " << e << " " << a << endl;
cout << k * e.pow(a) << endl;
}