結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー | Ryoga.exe |
提出日時 | 2023-05-28 14:42:28 |
言語 | C++17(gcc12) (gcc 12.3.0 + boost 1.87.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 4,430 bytes |
コンパイル時間 | 2,192 ms |
コンパイル使用メモリ | 201,204 KB |
実行使用メモリ | 5,248 KB |
最終ジャッジ日時 | 2024-12-27 02:37:40 |
合計ジャッジ時間 | 3,317 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | WA * 2 |
other | WA * 20 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; constexpr ll MOD = 1e9 + 7; template<long long m, std::enable_if_t<(1 <= m)>* = nullptr> struct ModInt { public: using value_type = unsigned long long; using signed_value_type = std::make_signed_t<value_type>; private: value_type m_value = 0; static constexpr value_type umod() noexcept { return static_cast<value_type>(m); } public: ModInt() = default; ModInt(const ModInt&) = default; ModInt(ModInt&&) noexcept = default; constexpr ModInt(const signed_value_type x) noexcept : m_value((x % m + m) % m) {} constexpr ModInt& operator =(const ModInt&) = default; constexpr ModInt& operator =(ModInt&&) noexcept = default; constexpr ModInt& operator =(const signed_value_type x) { m_value = (x % m + m) % m; return *this; } inline constexpr value_type value() const noexcept { return m_value; } explicit inline constexpr operator value_type() const noexcept { return m_value; } explicit inline constexpr operator signed_value_type() const noexcept { return static_cast<signed_value_type>(m_value); } explicit inline constexpr operator int() const noexcept { return static_cast<int>(m_value); } static ModInt raw(const value_type& x) { ModInt tmp; tmp.m_value = x; return tmp; } ModInt& operator++() { m_value++; if (m_value == umod()) m_value = 0; return *this; } ModInt& operator--() { if (m_value == 0) m_value = umod(); m_value--; return *this; } ModInt operator++(int) { ModInt tmp(*this); ++(*this); return tmp; } ModInt operator--(int) { ModInt tmp(*this); --(*this); return tmp; } ModInt& operator +=(const ModInt& rhs) { m_value += rhs.m_value; if (m_value >= umod()) m_value -= umod(); return *this; } ModInt& operator -=(const ModInt& rhs) { m_value -= rhs.m_value; if (m_value >= umod()) m_value += umod(); return *this; } ModInt& operator *=(const ModInt& rhs) { m_value = (m_value * rhs.m_value) % umod(); return *this; } ModInt& operator /=(const ModInt& rhs) { return *this = *this * rhs.inv(); } ModInt& operator ^=(const long long rhs) { return *this = pow(rhs); } ModInt operator +() const { return *this; } ModInt operator -() const { return ModInt() - *this; } ModInt pow(long long n) const { ModInt res(1), mul = *this; while(n > 0) { if (n & 1) res *= mul; mul *= mul; n >>= 1; } return res; } ModInt inv() const { long long a = m_value, b = m, u = 1, v = 0; while(b) { long long t = a / b; std::swap(a -= t * b, b); std::swap(u -= t * v, v); } return ModInt(u); } friend inline constexpr ModInt operator +(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) += rhs; } friend inline constexpr ModInt operator -(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) -= rhs; } friend inline constexpr ModInt operator *(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) *= rhs; } friend inline constexpr ModInt operator /(const ModInt& lhs, const ModInt& rhs) { return ModInt(lhs) /= rhs; } friend inline constexpr bool operator==(const ModInt& lhs, const ModInt& rhs) { return lhs.m_value == rhs.m_value; } friend inline constexpr bool operator!=(const ModInt& lhs, const ModInt& rhs) { return !(lhs == rhs); } friend inline std::ostream& operator <<(std::ostream& out, const ModInt& mint) { return out << mint.value(); } friend inline std::istream& operator >>(std::istream& is, ModInt& mint) { long long tmp; is >> tmp; mint = ModInt(tmp); return is; } }; template<class T> T Legendre(const long long n, const long long p) noexcept { T res = 0; long long q = p; while (true) { auto diff = n / q; if (diff == 0) { break; } res += diff; q *= p; } return res; } template<class T> T Factorial(long long n) { T res = 1; for (int i = 1; i <= n; i++) { res *= i; } return res; } int main() { using mint = ModInt<MOD>; ll n, p; cin >> n >> p; auto k = Legendre<mint>(n, p); auto e = Factorial<mint>(n); ll a = 1; for (int i = 1; i <= n; i++) { a *= i; a %= (MOD - 1); } cout << k << " " << e << " " << a << endl; cout << k * e.pow(a) << endl; }