結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー |
![]() |
提出日時 | 2023-05-28 14:44:06 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 3 ms / 2,000 ms |
コード長 | 4,787 bytes |
コンパイル時間 | 1,047 ms |
コンパイル使用メモリ | 121,916 KB |
最終ジャッジ日時 | 2025-02-13 11:58:06 |
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#ifndef LOCAL#define FAST_IO#endif// ============#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cmath>#include <iomanip>#include <iostream>#include <list>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <stack>#include <string>#include <tuple>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>#define OVERRIDE(a, b, c, d, ...) d#define REP2(i, n) for (i32 i = 0; i < (i32)(n); ++i)#define REP3(i, m, n) for (i32 i = (i32)(m); i < (i32)(n); ++i)#define REP(...) OVERRIDE(__VA_ARGS__, REP3, REP2)(__VA_ARGS__)#define PER(i, n) for (i32 i = (i32)(n) - 1; i >= 0; --i)#define ALL(x) begin(x), end(x)using namespace std;using u32 = unsigned int;using u64 = unsigned long long;using i32 = signed int;using i64 = signed long long;using f64 = double;using f80 = long double;template <typename T>using Vec = vector<T>;template <typename T>bool chmin(T &x, const T &y) {if (x > y) {x = y;return true;}return false;}template <typename T>bool chmax(T &x, const T &y) {if (x < y) {x = y;return true;}return false;}template <typename T>Vec<tuple<i32, i32, T>> runlength(const Vec<T> &a) {if (a.empty()) {return Vec<tuple<i32, i32, T>>();}Vec<tuple<i32, i32, T>> ret;i32 prv = 0;REP(i, 1, a.size()) {if (a[i - 1] != a[i]) {ret.emplace_back(prv, i, a[i - 1]);prv = i;}}ret.emplace_back(prv, (i32)a.size(), a.back());return ret;}#ifdef INT128using u128 = __uint128_t;using i128 = __int128_t;istream &operator>>(istream &is, i128 &x) {i64 v;is >> v;x = v;return is;}ostream &operator<<(ostream &os, i128 x) {os << (i64)x;return os;}istream &operator>>(istream &is, u128 &x) {u64 v;is >> v;x = v;return is;}ostream &operator<<(ostream &os, u128 x) {os << (u64)x;return os;}#endif[[maybe_unused]] constexpr i32 INF = 1000000100;[[maybe_unused]] constexpr i64 INF64 = 3000000000000000100;struct SetUpIO {SetUpIO() {#ifdef FAST_IOios::sync_with_stdio(false);cin.tie(nullptr);#endifcout << fixed << setprecision(15);}} set_up_io;// ============#ifdef DEBUGF#else#define DBG(x) (void)0#endif// ============constexpr bool is_prime(unsigned n) {if (n == 0 || n == 1) {return false;}for (unsigned i = 2; i * i <= n; ++i) {if (n % i == 0) {return false;}}return true;}constexpr unsigned mod_pow(unsigned x, unsigned y, unsigned mod) {unsigned ret = 1, self = x;while (y != 0) {if (y & 1) {ret = (unsigned) ((unsigned long long) ret * self % mod);}self = (unsigned) ((unsigned long long) self * self % mod);y /= 2;}return ret;}template <unsigned mod>constexpr unsigned primitive_root() {static_assert(is_prime(mod), "`mod` must be a prime number.");if (mod == 2) {return 1;}unsigned primes[32] = {};int it = 0;{unsigned m = mod - 1;for (unsigned i = 2; i * i <= m; ++i) {if (m % i == 0) {primes[it++] = i;while (m % i == 0) {m /= i;}}}if (m != 1) {primes[it++] = m;}}for (unsigned i = 2; i < mod; ++i) {bool ok = true;for (int j = 0; j < it; ++j) {if (mod_pow(i, (mod - 1) / primes[j], mod) == 1) {ok = false;break;}}if (ok)return i;}return 0;}// y >= 1template <typename T>constexpr T safe_mod(T x, T y) {x %= y;if (x < 0) {x += y;}return x;}// y != 0template <typename T>constexpr T floor_div(T x, T y) {if (y < 0) {x *= -1;y *= -1;}if (x >= 0) {return x / y;} else {return -((-x + y - 1) / y);}}// y != 0template <typename T>constexpr T ceil_div(T x, T y) {if (y < 0) {x *= -1;y *= -1;}if (x >= 0) {return (x + y - 1) / y;} else {return -(-x / y);}}// ============constexpr i32 P = 1000000007;int main() {i32 n, p;cin >> n >> p;i64 f = 1, f1 = 1;REP(i, 1, n + 1) {f *= i;f %= P;f1 *= i;f1 %= P - 1;}u32 ff = mod_pow((u32)f, (u32)f1, (u32)P);i32 cnt = 0;while (n > 0) {n /= p;cnt += n;}cout << (i64)cnt * ff % P << '\n';}