結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー |
![]() |
提出日時 | 2023-05-28 15:25:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 11 ms / 2,000 ms |
コード長 | 2,500 bytes |
コンパイル時間 | 1,965 ms |
コンパイル使用メモリ | 193,172 KB |
最終ジャッジ日時 | 2025-02-13 13:18:11 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <bits/stdc++.h> using namespace std; using ll = long long; #define rep(i, n) for (int i = 0; i < n; i++) #define INF (1LL << 60) #define all(v) (v).begin(), (v).end() template <class T> void chmin(T &a, T b) { if (a > b) a = b; } template <class T> void chmax(T &a, T b) { if (a < b) a = b; } template <int mod> struct ModInt { int x; ModInt() : x(0) {} ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {} ModInt &operator+=(const ModInt &p) { if ((x += p.x) >= mod) x -= mod; return *this; } ModInt &operator-=(const ModInt &p) { if ((x += mod - p.x) >= mod) x -= mod; return *this; } ModInt &operator*=(const ModInt &p) { x = (int)(1LL * x * p.x % mod); return *this; } ModInt &operator/=(const ModInt &p) { *this *= p.inverse(); return *this; } ModInt operator-() const { return ModInt(-x); } ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; } ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; } ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; } ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; } bool operator==(const ModInt &p) const { return x == p.x; } bool operator!=(const ModInt &p) const { return x != p.x; } ModInt inverse() const { int a = x, b = mod, u = 1, v = 0, t; while (b > 0) { t = a / b; swap(a -= t * b, b); swap(u -= t * v, v); } return ModInt(u); } ModInt pow(int64_t n) const { ModInt ret(1), mul(x); while (n > 0) { if (n & 1) ret *= mul; mul *= mul; n >>= 1; } return ret; } friend ostream &operator<<(ostream &os, const ModInt &p) { return os << p.x; } friend istream &operator>>(istream &is, ModInt &a) { int64_t t; is >> t; a = ModInt<mod>(t); return (is); } static int get_mod() { return mod; } }; using mint = ModInt<1000000007>; int main() { ll N, P; cin >> N >> P; mint base = 0, power = 1; for (ll i = 2; i <= N; i++) { ll t = i; power *= mint(i); while (t % P == 0) { base += 1; t /= P; } } for (ll i = 1; i <= N; i++) { power = power.pow(i); } cout << (base * power).x << endl; }