結果
問題 | No.2326 Factorial to the Power of Factorial to the... |
ユーザー |
![]() |
提出日時 | 2023-05-28 15:25:43 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 11 ms / 2,000 ms |
コード長 | 2,500 bytes |
コンパイル時間 | 1,965 ms |
コンパイル使用メモリ | 193,172 KB |
最終ジャッジ日時 | 2025-02-13 13:18:11 |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 20 |
ソースコード
#include <bits/stdc++.h>using namespace std;using ll = long long;#define rep(i, n) for (int i = 0; i < n; i++)#define INF (1LL << 60)#define all(v) (v).begin(), (v).end()template <class T>void chmin(T &a, T b) {if (a > b) a = b;}template <class T>void chmax(T &a, T b) {if (a < b) a = b;}template <int mod>struct ModInt {int x;ModInt() : x(0) {}ModInt(int64_t y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if ((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int)(1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }ModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;swap(a -= t * b, b);swap(u -= t * v, v);}return ModInt(u);}ModInt pow(int64_t n) const {ModInt ret(1), mul(x);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}friend ostream &operator<<(ostream &os, const ModInt &p) {return os << p.x;}friend istream &operator>>(istream &is, ModInt &a) {int64_t t;is >> t;a = ModInt<mod>(t);return (is);}static int get_mod() { return mod; }};using mint = ModInt<1000000007>;int main() {ll N, P;cin >> N >> P;mint base = 0, power = 1;for (ll i = 2; i <= N; i++) {ll t = i;power *= mint(i);while (t % P == 0) {base += 1;t /= P;}}for (ll i = 1; i <= N; i++) {power = power.pow(i);}cout << (base * power).x << endl;}