結果

問題 No.2336 Do you like typical problems?
ユーザー 👑 rin204rin204
提出日時 2023-06-02 22:04:09
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,555 ms / 2,000 ms
コード長 18,593 bytes
コンパイル時間 3,418 ms
コンパイル使用メモリ 277,908 KB
実行使用メモリ 49,776 KB
最終ジャッジ日時 2024-07-08 00:13:44
合計ジャッジ時間 14,197 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
5,248 KB
testcase_01 AC 1 ms
5,376 KB
testcase_02 AC 1 ms
5,376 KB
testcase_03 AC 1 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 1 ms
5,376 KB
testcase_08 AC 9 ms
5,376 KB
testcase_09 AC 10 ms
5,376 KB
testcase_10 AC 9 ms
5,376 KB
testcase_11 AC 9 ms
5,376 KB
testcase_12 AC 10 ms
5,376 KB
testcase_13 AC 1,555 ms
49,744 KB
testcase_14 AC 1,531 ms
49,672 KB
testcase_15 AC 1,506 ms
49,776 KB
testcase_16 AC 1,519 ms
49,548 KB
testcase_17 AC 1,533 ms
49,720 KB
testcase_18 AC 43 ms
12,592 KB
testcase_19 AC 53 ms
12,864 KB
testcase_20 AC 1,259 ms
49,676 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

// start A.cpp
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;

using ll  = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));

#ifndef RIN__LOCAL
#define endl "\n"
#endif
#define spa ' '
#define len(A) A.size()
#define all(A) begin(A), end(A)

#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)

vector<char> stoc(string &S) {
    int n = S.size();
    vector<char> ret(n);
    for (int i = 0; i < n; i++) ret[i] = S[i];
    return ret;
}

#define INT(...)                                                                                                                                                                                       \
    int __VA_ARGS__;                                                                                                                                                                                   \
    inp(__VA_ARGS__);
#define LL(...)                                                                                                                                                                                        \
    ll __VA_ARGS__;                                                                                                                                                                                    \
    inp(__VA_ARGS__);
#define STRING(...)                                                                                                                                                                                    \
    string __VA_ARGS__;                                                                                                                                                                                \
    inp(__VA_ARGS__);
#define CHAR(...)                                                                                                                                                                                      \
    char __VA_ARGS__;                                                                                                                                                                                  \
    inp(__VA_ARGS__);
#define VEC(T, A, n)                                                                                                                                                                                   \
    vector<T> A(n);                                                                                                                                                                                    \
    inp(A);
#define VVEC(T, A, n, m)                                                                                                                                                                               \
    vector<vector<T>> A(n, vector<T>(m));                                                                                                                                                              \
    inp(A);

const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;

template <class T>
auto min(const T &a) {
    return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
    return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
    return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
    return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
    return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
    auto b = clamp(a, l, r);
    return (a != b ? a = b, 1 : 0);
}

void FLUSH() {
    cout << flush;
}
void print() {
    cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
    cout << head;
    if (sizeof...(Tail)) cout << spa;
    print(forward<Tail>(tail)...);
}
template <typename T>
void print(vector<T> &A) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << ' ';
    }
    cout << endl;
}
template <typename T>
void print(vector<vector<T>> &A) {
    for (auto &row : A) print(row);
}
template <typename T, typename S>
void print(pair<T, S> &A) {
    cout << A.first << spa << A.second << endl;
}
template <typename T, typename S>
void print(vector<pair<T, S>> &A) {
    for (auto &row : A) print(row);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
    int n = A.size();
    for (int i = 0; i < n; i++) {
        cout << A[i];
        if (i != n - 1) cout << sep;
    }
    cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
    cout << A << end;
}
template <typename T>
void priend(T A) {
    priend(A, spa);
}
template <class... T>
void inp(T &... a) {
    (cin >> ... >> a);
}
template <typename T>
void inp(vector<T> &A) {
    for (auto &a : A) cin >> a;
}
template <typename T>
void inp(vector<vector<T>> &A) {
    for (auto &row : A) inp(row);
}
template <typename T, typename S>
void inp(pair<T, S> &A) {
    inp(A.first, A.second);
}
template <typename T, typename S>
void inp(vector<pair<T, S>> &A) {
    for (auto &row : A) inp(row.first, row.second);
}

template <typename T>
T sum(vector<T> &A) {
    T tot = 0;
    for (auto a : A) tot += a;
    return tot;
}

template <typename T>
vector<T> compression(vector<T> X) {
    sort(all(X));
    X.erase(unique(all(X)), X.end());
    return X;
}

vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<int>> edges(n, vector<int>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        u -= indexed;
        v -= indexed;
        edges[u].push_back(v);
        if (!direct) edges[v].push_back(u);
    }
    return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
    return read_edges(n, n - 1, false, indexed);
}
template <typename T>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
    vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
    for (int i = 0; i < m; i++) {
        INT(u, v);
        T w;
        inp(w);
        u -= indexed;
        v -= indexed;
        edges[u].push_back({v, w});
        if (!direct) edges[v].push_back({u, w});
    }
    return edges;
}
template <typename T>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
    return read_wedges<T>(n, n - 1, false, indexed);
}

inline bool yes(bool f = true) {
    cout << (f ? "yes" : "no") << endl;
    return f;
}
inline bool Yes(bool f = true) {
    cout << (f ? "Yes" : "No") << endl;
    return f;
}
inline bool YES(bool f = true) {
    cout << (f ? "YES" : "NO") << endl;
    return f;
}

inline bool no(bool f = true) {
    cout << (!f ? "yes" : "no") << endl;
    return f;
}
inline bool No(bool f = true) {
    cout << (!f ? "Yes" : "No") << endl;
    return f;
}
inline bool NO(bool f = true) {
    cout << (!f ? "YES" : "NO") << endl;
    return f;
}

// start other/Modint.hpp

template <int MOD>
struct Modint {
    int x;
    Modint() : x(0) {}
    Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Modint &operator+=(const Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Modint &operator-=(const Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Modint &operator*=(const Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Modint &operator/=(const Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Modint &operator%=(const Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Modint operator-() const {
        return Modint(-x);
    }

    Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Modint operator++(int) {
        Modint result = *this;
        ++*this;
        return result;
    }

    Modint operator--(int) {
        Modint result = *this;
        --*this;
        return result;
    }

    friend Modint operator+(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) += rhs;
    }

    friend Modint operator-(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) -= rhs;
    }

    friend Modint operator*(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) *= rhs;
    }

    friend Modint operator/(const Modint &lhs, const Modint &rhs) {
        return Modint(lhs) /= rhs;
    }

    friend Modint operator%(const Modint &lhs, const Modint &rhs) {
        assert(rhs.x == 0);
        return Modint(lhs);
    }

    bool operator==(const Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Modint &rhs) const {
        return x < rhs.x;
    }

    bool operator<=(const Modint &rhs) const {
        return x <= rhs.x;
    }

    bool operator>(const Modint &rhs) const {
        return x > rhs.x;
    }

    bool operator>=(const Modint &rhs) const {
        return x >= rhs.x;
    }

    Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Modint(u);
    }

    Modint pow(int64_t k) const {
        Modint ret(1);
        Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Modint &p) {
        int64_t y;
        is >> y;
        p = Modint<MOD>(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};

struct Arbitrary_Modint {
    int x;
    static int MOD;

    static void set_mod(int mod) {
        MOD = mod;
    }

    Arbitrary_Modint() : x(0) {}
    Arbitrary_Modint(int64_t y) {
        if (y >= 0)
            x = y % MOD;
        else
            x = (y % MOD + MOD) % MOD;
    }

    Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
        x += p.x;
        if (x >= MOD) x -= MOD;
        return *this;
    }

    Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
        x -= p.x;
        if (x < 0) x += MOD;
        return *this;
    }

    Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
        x = int(1LL * x * p.x % MOD);
        return *this;
    }

    Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
        *this *= p.inverse();
        return *this;
    }

    Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
        assert(p.x == 0);
        return *this;
    }

    Arbitrary_Modint operator-() const {
        return Arbitrary_Modint(-x);
    }

    Arbitrary_Modint &operator++() {
        x++;
        if (x == MOD) x = 0;
        return *this;
    }

    Arbitrary_Modint &operator--() {
        if (x == 0) x = MOD;
        x--;
        return *this;
    }

    Arbitrary_Modint operator++(int) {
        Arbitrary_Modint result = *this;
        ++*this;
        return result;
    }

    Arbitrary_Modint operator--(int) {
        Arbitrary_Modint result = *this;
        --*this;
        return result;
    }

    friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) += rhs;
    }

    friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) -= rhs;
    }

    friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) *= rhs;
    }

    friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        return Arbitrary_Modint(lhs) /= rhs;
    }

    friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
        assert(rhs.x == 0);
        return Arbitrary_Modint(lhs);
    }

    bool operator==(const Arbitrary_Modint &p) const {
        return x == p.x;
    }

    bool operator!=(const Arbitrary_Modint &p) const {
        return x != p.x;
    }

    bool operator<(const Arbitrary_Modint &rhs) {
        return x < rhs.x;
    }

    bool operator<=(const Arbitrary_Modint &rhs) {
        return x <= rhs.x;
    }

    bool operator>(const Arbitrary_Modint &rhs) {
        return x > rhs.x;
    }

    bool operator>=(const Arbitrary_Modint &rhs) {
        return x >= rhs.x;
    }

    Arbitrary_Modint inverse() const {
        int a = x, b = MOD, u = 1, v = 0, t;
        while (b > 0) {
            t = a / b;
            a -= t * b;
            u -= t * v;
            swap(a, b);
            swap(u, v);
        }
        return Arbitrary_Modint(u);
    }

    Arbitrary_Modint pow(int64_t k) const {
        Arbitrary_Modint ret(1);
        Arbitrary_Modint y(x);
        while (k > 0) {
            if (k & 1) ret *= y;
            y *= y;
            k >>= 1;
        }
        return ret;
    }

    friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) {
        return os << p.x;
    }

    friend istream &operator>>(istream &is, Arbitrary_Modint &p) {
        int64_t y;
        is >> y;
        p = Arbitrary_Modint(y);
        return (is);
    }

    static int get_mod() {
        return MOD;
    }
};
int Arbitrary_Modint::MOD = 998244353;

using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint  = Arbitrary_Modint;

// end other/Modint.hpp
// restart A.cpp
using mint = modint9;
// #include "other/fraction.hpp"
// using mint = Fraction;
// start data_structure/lazySegTree.hpp

template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
  public:
    explicit lazy_segtree(const vector<S> &v) : _n(int(v.size())) {
        size = 1;
        log  = 0;
        while (size < _n) {
            log++;
            size <<= 1;
        }
        d  = vector<S>(2 * size, e());
        lz = vector<F>(size, id());
        for (int i = 0; i < _n; i++) d[size + i] = v[i];
        for (int i = size - 1; i >= 1; i--) update(i);
    }
    explicit lazy_segtree(int n) : lazy_segtree(vector<S>(n, e())) {}

    S prod(int l, int r) {
        if (l == r) return e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = e(), smr = e();
        while (l < r) {
            if (l & 1) sml = op(sml, d[l++]);
            if (r & 1) smr = op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return op(sml, smr);
    }

    S all_prod() {
        return d[1];
    }

    void apply(int l, int r, F f) {
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

  private:
    int _n, size, log;
    vector<S> d;
    vector<F> lz;
    void update(int k) {
        d[k] = op(d[2 * k], d[2 * k + 1]);
    }
    void all_apply(int k, F f) {
        d[k] = mapping(f, d[k]);
        if (k < size) lz[k] = composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(2 * k, lz[k]);
        all_apply(2 * k + 1, lz[k]);
        lz[k] = id();
    }
};

// end data_structure/lazySegTree.hpp
// restart A.cpp

struct S {
    ll len;
    mint x0;
    mint x1;
    mint x2;
};
S op(S l, S r) {
    return S{l.len + r.len, l.x0 + r.x0, l.x1 + r.x1, l.x2 + r.x2};
}
S e() {
    return {0, 1, 0, 0};
}
struct F {
    mint x0;
    mint x1;
    mint x2;
};
S mapping(F f, S x) {
    return S{x.len, f.x0 * x.x0, f.x0 * x.x1 + f.x1 * x.x0, f.x0 * x.x2 + f.x1 * x.x1 + f.x2 * x.x0};
}
F composition(F f, F x) {
    return F{f.x0 * x.x0, f.x0 * x.x1 + f.x1 * x.x0, f.x0 * x.x2 + f.x1 * x.x1 + f.x2 * x.x0};
}
F id() {
    return F{1, 0, 0};
}

void solve() {
    INT(n);
    vec(ll, X, 1, 0);
    vec(ll, L, n);
    vec(ll, R, n);
    fori(i, n) {
        inp(L[i], R[i]);
        R[i]++;
        X.push_back(L[i]);
        X.push_back(R[i]);
    }
    X      = compression(X);
    int le = len(X);
    vec(S, ini, le - 1);
    fori(i, le - 1) {
        ini[i] = {X[i + 1] - X[i], 1, 0, 0};
    }

    lazy_segtree<S, op, e, F, mapping, composition, id> seg(ini);
    fori(i, n) {
        int l = lower_bound(all(X), L[i]) - X.begin();
        int r = lower_bound(all(X), R[i]) - X.begin();
        seg.apply(l, r, F{1, mint(1) / (R[i] - L[i]), 0});
    }
    mint inv2 = mint(1) / 2;
    mint ans  = inv2 * inv2 * n * (n - 1);
    fori(i, le - 1) {
        auto res = seg.prod(i, i + 1);
        ans -= inv2 * res.x2 * res.len;
    }
    fori(i, 1, n + 1) ans *= i;
    print(ans);
}

int main() {
    cin.tie(0)->sync_with_stdio(0);
    // cout << fixed << setprecision(12);
    int t;
    t = 1;
    // cin >> t;
    while (t--) solve();
    return 0;
}

// end A.cpp
0