結果

問題 No.2336 Do you like typical problems?
ユーザー 👑 rin204
提出日時 2023-06-02 22:04:09
言語 C++23
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 1,555 ms / 2,000 ms
コード長 18,593 bytes
コンパイル時間 3,418 ms
コンパイル使用メモリ 277,908 KB
実行使用メモリ 49,776 KB
最終ジャッジ日時 2024-07-08 00:13:44
合計ジャッジ時間 14,197 ms
ジャッジサーバーID
(参考情報)
judge5 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 18
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

// start A.cpp
// #pragma GCC target("avx2")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ull = unsigned long long;
template <class T>
using pq = priority_queue<T>;
template <class T>
using qp = priority_queue<T, vector<T>, greater<T>>;
#define vec(T, A, ...) vector<T> A(__VA_ARGS__);
#define vvec(T, A, h, ...) vector<vector<T>> A(h, vector<T>(__VA_ARGS__));
#define vvvec(T, A, h1, h2, ...) vector<vector<vector<T>>> A(h1, vector<vector<T>>(h2, vector<T>(__VA_ARGS__)));
#ifndef RIN__LOCAL
#define endl "\n"
#endif
#define spa ' '
#define len(A) A.size()
#define all(A) begin(A), end(A)
#define fori1(a) for (ll _ = 0; _ < (a); _++)
#define fori2(i, a) for (ll i = 0; i < (a); i++)
#define fori3(i, a, b) for (ll i = (a); i < (b); i++)
#define fori4(i, a, b, c) for (ll i = (a); ((c) > 0 || i > (b)) && ((c) < 0 || i < (b)); i += (c))
#define overload4(a, b, c, d, e, ...) e
#define fori(...) overload4(__VA_ARGS__, fori4, fori3, fori2, fori1)(__VA_ARGS__)
vector<char> stoc(string &S) {
int n = S.size();
vector<char> ret(n);
for (int i = 0; i < n; i++) ret[i] = S[i];
return ret;
}
#define INT(...)
     \
int __VA_ARGS__;
         \
inp(__VA_ARGS__);
#define LL(...)
     \
ll __VA_ARGS__;
         \
inp(__VA_ARGS__);
#define STRING(...)
     \
string __VA_ARGS__;
         \
inp(__VA_ARGS__);
#define CHAR(...)
     \
char __VA_ARGS__;
         \
inp(__VA_ARGS__);
#define VEC(T, A, n)
     \
vector<T> A(n);
         \
inp(A);
#define VVEC(T, A, n, m)
     \
vector<vector<T>> A(n, vector<T>(m));
         \
inp(A);
const ll MOD1 = 1000000007;
const ll MOD9 = 998244353;
template <class T>
auto min(const T &a) {
return *min_element(all(a));
}
template <class T>
auto max(const T &a) {
return *max_element(all(a));
}
template <class T, class S>
auto clamp(T &a, const S &l, const S &r) {
return (a > r ? r : a < l ? l : a);
}
template <class T, class S>
inline bool chmax(T &a, const S &b) {
return (a < b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chmin(T &a, const S &b) {
return (a > b ? a = b, 1 : 0);
}
template <class T, class S>
inline bool chclamp(T &a, const S &l, const S &r) {
auto b = clamp(a, l, r);
return (a != b ? a = b, 1 : 0);
}
void FLUSH() {
cout << flush;
}
void print() {
cout << endl;
}
template <class Head, class... Tail>
void print(Head &&head, Tail &&... tail) {
cout << head;
if (sizeof...(Tail)) cout << spa;
print(forward<Tail>(tail)...);
}
template <typename T>
void print(vector<T> &A) {
int n = A.size();
for (int i = 0; i < n; i++) {
cout << A[i];
if (i != n - 1) cout << ' ';
}
cout << endl;
}
template <typename T>
void print(vector<vector<T>> &A) {
for (auto &row : A) print(row);
}
template <typename T, typename S>
void print(pair<T, S> &A) {
cout << A.first << spa << A.second << endl;
}
template <typename T, typename S>
void print(vector<pair<T, S>> &A) {
for (auto &row : A) print(row);
}
template <typename T, typename S>
void prisep(vector<T> &A, S sep) {
int n = A.size();
for (int i = 0; i < n; i++) {
cout << A[i];
if (i != n - 1) cout << sep;
}
cout << endl;
}
template <typename T, typename S>
void priend(T A, S end) {
cout << A << end;
}
template <typename T>
void priend(T A) {
priend(A, spa);
}
template <class... T>
void inp(T &... a) {
(cin >> ... >> a);
}
template <typename T>
void inp(vector<T> &A) {
for (auto &a : A) cin >> a;
}
template <typename T>
void inp(vector<vector<T>> &A) {
for (auto &row : A) inp(row);
}
template <typename T, typename S>
void inp(pair<T, S> &A) {
inp(A.first, A.second);
}
template <typename T, typename S>
void inp(vector<pair<T, S>> &A) {
for (auto &row : A) inp(row.first, row.second);
}
template <typename T>
T sum(vector<T> &A) {
T tot = 0;
for (auto a : A) tot += a;
return tot;
}
template <typename T>
vector<T> compression(vector<T> X) {
sort(all(X));
X.erase(unique(all(X)), X.end());
return X;
}
vector<vector<int>> read_edges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<int>> edges(n, vector<int>());
for (int i = 0; i < m; i++) {
INT(u, v);
u -= indexed;
v -= indexed;
edges[u].push_back(v);
if (!direct) edges[v].push_back(u);
}
return edges;
}
vector<vector<int>> read_tree(int n, int indexed = 1) {
return read_edges(n, n - 1, false, indexed);
}
template <typename T>
vector<vector<pair<int, T>>> read_wedges(int n, int m, bool direct = false, int indexed = 1) {
vector<vector<pair<int, T>>> edges(n, vector<pair<int, T>>());
for (int i = 0; i < m; i++) {
INT(u, v);
T w;
inp(w);
u -= indexed;
v -= indexed;
edges[u].push_back({v, w});
if (!direct) edges[v].push_back({u, w});
}
return edges;
}
template <typename T>
vector<vector<pair<int, T>>> read_wtree(int n, int indexed = 1) {
return read_wedges<T>(n, n - 1, false, indexed);
}
inline bool yes(bool f = true) {
cout << (f ? "yes" : "no") << endl;
return f;
}
inline bool Yes(bool f = true) {
cout << (f ? "Yes" : "No") << endl;
return f;
}
inline bool YES(bool f = true) {
cout << (f ? "YES" : "NO") << endl;
return f;
}
inline bool no(bool f = true) {
cout << (!f ? "yes" : "no") << endl;
return f;
}
inline bool No(bool f = true) {
cout << (!f ? "Yes" : "No") << endl;
return f;
}
inline bool NO(bool f = true) {
cout << (!f ? "YES" : "NO") << endl;
return f;
}
// start other/Modint.hpp
template <int MOD>
struct Modint {
int x;
Modint() : x(0) {}
Modint(int64_t y) {
if (y >= 0)
x = y % MOD;
else
x = (y % MOD + MOD) % MOD;
}
Modint &operator+=(const Modint &p) {
x += p.x;
if (x >= MOD) x -= MOD;
return *this;
}
Modint &operator-=(const Modint &p) {
x -= p.x;
if (x < 0) x += MOD;
return *this;
}
Modint &operator*=(const Modint &p) {
x = int(1LL * x * p.x % MOD);
return *this;
}
Modint &operator/=(const Modint &p) {
*this *= p.inverse();
return *this;
}
Modint &operator%=(const Modint &p) {
assert(p.x == 0);
return *this;
}
Modint operator-() const {
return Modint(-x);
}
Modint &operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Modint &operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Modint operator++(int) {
Modint result = *this;
++*this;
return result;
}
Modint operator--(int) {
Modint result = *this;
--*this;
return result;
}
friend Modint operator+(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) += rhs;
}
friend Modint operator-(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) -= rhs;
}
friend Modint operator*(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) *= rhs;
}
friend Modint operator/(const Modint &lhs, const Modint &rhs) {
return Modint(lhs) /= rhs;
}
friend Modint operator%(const Modint &lhs, const Modint &rhs) {
assert(rhs.x == 0);
return Modint(lhs);
}
bool operator==(const Modint &p) const {
return x == p.x;
}
bool operator!=(const Modint &p) const {
return x != p.x;
}
bool operator<(const Modint &rhs) const {
return x < rhs.x;
}
bool operator<=(const Modint &rhs) const {
return x <= rhs.x;
}
bool operator>(const Modint &rhs) const {
return x > rhs.x;
}
bool operator>=(const Modint &rhs) const {
return x >= rhs.x;
}
Modint inverse() const {
int a = x, b = MOD, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
u -= t * v;
swap(a, b);
swap(u, v);
}
return Modint(u);
}
Modint pow(int64_t k) const {
Modint ret(1);
Modint y(x);
while (k > 0) {
if (k & 1) ret *= y;
y *= y;
k >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Modint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, Modint &p) {
int64_t y;
is >> y;
p = Modint<MOD>(y);
return (is);
}
static int get_mod() {
return MOD;
}
};
struct Arbitrary_Modint {
int x;
static int MOD;
static void set_mod(int mod) {
MOD = mod;
}
Arbitrary_Modint() : x(0) {}
Arbitrary_Modint(int64_t y) {
if (y >= 0)
x = y % MOD;
else
x = (y % MOD + MOD) % MOD;
}
Arbitrary_Modint &operator+=(const Arbitrary_Modint &p) {
x += p.x;
if (x >= MOD) x -= MOD;
return *this;
}
Arbitrary_Modint &operator-=(const Arbitrary_Modint &p) {
x -= p.x;
if (x < 0) x += MOD;
return *this;
}
Arbitrary_Modint &operator*=(const Arbitrary_Modint &p) {
x = int(1LL * x * p.x % MOD);
return *this;
}
Arbitrary_Modint &operator/=(const Arbitrary_Modint &p) {
*this *= p.inverse();
return *this;
}
Arbitrary_Modint &operator%=(const Arbitrary_Modint &p) {
assert(p.x == 0);
return *this;
}
Arbitrary_Modint operator-() const {
return Arbitrary_Modint(-x);
}
Arbitrary_Modint &operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Arbitrary_Modint &operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Arbitrary_Modint operator++(int) {
Arbitrary_Modint result = *this;
++*this;
return result;
}
Arbitrary_Modint operator--(int) {
Arbitrary_Modint result = *this;
--*this;
return result;
}
friend Arbitrary_Modint operator+(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) += rhs;
}
friend Arbitrary_Modint operator-(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) -= rhs;
}
friend Arbitrary_Modint operator*(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) *= rhs;
}
friend Arbitrary_Modint operator/(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
return Arbitrary_Modint(lhs) /= rhs;
}
friend Arbitrary_Modint operator%(const Arbitrary_Modint &lhs, const Arbitrary_Modint &rhs) {
assert(rhs.x == 0);
return Arbitrary_Modint(lhs);
}
bool operator==(const Arbitrary_Modint &p) const {
return x == p.x;
}
bool operator!=(const Arbitrary_Modint &p) const {
return x != p.x;
}
bool operator<(const Arbitrary_Modint &rhs) {
return x < rhs.x;
}
bool operator<=(const Arbitrary_Modint &rhs) {
return x <= rhs.x;
}
bool operator>(const Arbitrary_Modint &rhs) {
return x > rhs.x;
}
bool operator>=(const Arbitrary_Modint &rhs) {
return x >= rhs.x;
}
Arbitrary_Modint inverse() const {
int a = x, b = MOD, u = 1, v = 0, t;
while (b > 0) {
t = a / b;
a -= t * b;
u -= t * v;
swap(a, b);
swap(u, v);
}
return Arbitrary_Modint(u);
}
Arbitrary_Modint pow(int64_t k) const {
Arbitrary_Modint ret(1);
Arbitrary_Modint y(x);
while (k > 0) {
if (k & 1) ret *= y;
y *= y;
k >>= 1;
}
return ret;
}
friend ostream &operator<<(ostream &os, const Arbitrary_Modint &p) {
return os << p.x;
}
friend istream &operator>>(istream &is, Arbitrary_Modint &p) {
int64_t y;
is >> y;
p = Arbitrary_Modint(y);
return (is);
}
static int get_mod() {
return MOD;
}
};
int Arbitrary_Modint::MOD = 998244353;
using modint9 = Modint<998244353>;
using modint1 = Modint<1000000007>;
using modint = Arbitrary_Modint;
// end other/Modint.hpp
// restart A.cpp
using mint = modint9;
// #include "other/fraction.hpp"
// using mint = Fraction;
// start data_structure/lazySegTree.hpp
template <class S, S (*op)(S, S), S (*e)(), class F, S (*mapping)(F, S), F (*composition)(F, F), F (*id)()>
struct lazy_segtree {
public:
explicit lazy_segtree(const vector<S> &v) : _n(int(v.size())) {
size = 1;
log = 0;
while (size < _n) {
log++;
size <<= 1;
}
d = vector<S>(2 * size, e());
lz = vector<F>(size, id());
for (int i = 0; i < _n; i++) d[size + i] = v[i];
for (int i = size - 1; i >= 1; i--) update(i);
}
explicit lazy_segtree(int n) : lazy_segtree(vector<S>(n, e())) {}
S prod(int l, int r) {
if (l == r) return e();
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
S sml = e(), smr = e();
while (l < r) {
if (l & 1) sml = op(sml, d[l++]);
if (r & 1) smr = op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return op(sml, smr);
}
S all_prod() {
return d[1];
}
void apply(int l, int r, F f) {
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
for (int i = 1; i <= log; i++) {
if (((l >> i) << i) != l) update(l >> i);
if (((r >> i) << i) != r) update((r - 1) >> i);
}
}
private:
int _n, size, log;
vector<S> d;
vector<F> lz;
void update(int k) {
d[k] = op(d[2 * k], d[2 * k + 1]);
}
void all_apply(int k, F f) {
d[k] = mapping(f, d[k]);
if (k < size) lz[k] = composition(f, lz[k]);
}
void push(int k) {
all_apply(2 * k, lz[k]);
all_apply(2 * k + 1, lz[k]);
lz[k] = id();
}
};
// end data_structure/lazySegTree.hpp
// restart A.cpp
struct S {
ll len;
mint x0;
mint x1;
mint x2;
};
S op(S l, S r) {
return S{l.len + r.len, l.x0 + r.x0, l.x1 + r.x1, l.x2 + r.x2};
}
S e() {
return {0, 1, 0, 0};
}
struct F {
mint x0;
mint x1;
mint x2;
};
S mapping(F f, S x) {
return S{x.len, f.x0 * x.x0, f.x0 * x.x1 + f.x1 * x.x0, f.x0 * x.x2 + f.x1 * x.x1 + f.x2 * x.x0};
}
F composition(F f, F x) {
return F{f.x0 * x.x0, f.x0 * x.x1 + f.x1 * x.x0, f.x0 * x.x2 + f.x1 * x.x1 + f.x2 * x.x0};
}
F id() {
return F{1, 0, 0};
}
void solve() {
INT(n);
vec(ll, X, 1, 0);
vec(ll, L, n);
vec(ll, R, n);
fori(i, n) {
inp(L[i], R[i]);
R[i]++;
X.push_back(L[i]);
X.push_back(R[i]);
}
X = compression(X);
int le = len(X);
vec(S, ini, le - 1);
fori(i, le - 1) {
ini[i] = {X[i + 1] - X[i], 1, 0, 0};
}
lazy_segtree<S, op, e, F, mapping, composition, id> seg(ini);
fori(i, n) {
int l = lower_bound(all(X), L[i]) - X.begin();
int r = lower_bound(all(X), R[i]) - X.begin();
seg.apply(l, r, F{1, mint(1) / (R[i] - L[i]), 0});
}
mint inv2 = mint(1) / 2;
mint ans = inv2 * inv2 * n * (n - 1);
fori(i, le - 1) {
auto res = seg.prod(i, i + 1);
ans -= inv2 * res.x2 * res.len;
}
fori(i, 1, n + 1) ans *= i;
print(ans);
}
int main() {
cin.tie(0)->sync_with_stdio(0);
// cout << fixed << setprecision(12);
int t;
t = 1;
// cin >> t;
while (t--) solve();
return 0;
}
// end A.cpp
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0