結果
| 問題 |
No.1340 おーじ君をさがせ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2023-06-05 13:55:07 |
| 言語 | Go (1.23.4) |
| 結果 |
AC
|
| 実行時間 | 26 ms / 2,000 ms |
| コード長 | 8,103 bytes |
| コンパイル時間 | 13,958 ms |
| コンパイル使用メモリ | 213,888 KB |
| 実行使用メモリ | 5,888 KB |
| 最終ジャッジ日時 | 2024-12-29 06:06:30 |
| 合計ジャッジ時間 | 15,224 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 59 |
ソースコード
package main
import (
"bufio"
"fmt"
"math/bits"
"math/rand"
"os"
"strings"
"time"
)
func main() {
yuki1340()
// test()
}
// https://yukicoder.me/problems/no/1340
// 给定一个n个点m条边的有向图,求t步后可能所在的顶点个数(每一步必须移动到一个相邻点).
// n<=100 m<=1e4 t<=1e18
func yuki1340() {
in := bufio.NewReader(os.Stdin)
out := bufio.NewWriter(os.Stdout)
defer out.Flush()
var n, m, t int
fmt.Fscan(in, &n, &m, &t)
mat := NewBooleanSquareMatrix(n)
for i := 0; i < m; i++ {
var a, b int
fmt.Fscan(in, &a, &b)
mat.Set(a, b, true)
}
mat.IPow(t)
res := 0
for i := 0; i < n; i++ {
if mat.Get(0, i) {
res++
}
}
fmt.Fprintln(out, res)
}
// https://leetcode.cn/problems/course-schedule-iv/
func checkIfPrerequisite(numCourses int, prerequisites [][]int, queries [][]int) []bool {
mat := NewBooleanSquareMatrix(numCourses)
for _, p := range prerequisites {
mat.Set(p[0], p[1], true)
}
trans := mat.TransitiveClosure()
res := make([]bool, len(queries))
for i, q := range queries {
res[i] = trans.Get(q[0], q[1])
}
return res
}
func test() {
mat := NewBooleanSquareMatrix(3)
mat.Set(0, 0, true)
mat.Set(0, 1, true)
mat.Set(1, 2, true)
mat.Set(1, 0, true)
testRandom := func() {
fmt.Println(strings.Repeat("=", 20))
fmt.Println("测试随机矩阵")
// !随机01矩阵
// 5000*5000的矩阵乘法 => 697.955ms
N_5000 := 5000
mat := NewBooleanSquareMatrix(N_5000)
for i := 0; i < N_5000; i++ {
for j := 0; j < N_5000; j++ {
if rand.Intn(2) == 0 {
mat.Set(i, j, true)
}
}
}
time1 := time.Now()
Mul(mat, mat)
time2 := time.Now()
fmt.Println(fmt.Sprintf("5000*5000的矩阵乘法:%v", time2.Sub(time1)))
// 2000*2000的传递闭包 => 830.0099ms
N_2000 := 2000
mat = NewBooleanSquareMatrix(N_2000)
for i := 0; i < N_2000; i++ {
for j := 0; j < N_2000; j++ {
if rand.Intn(2) == 0 {
mat.Set(i, j, true)
}
}
}
time3 := time.Now()
mat.TransitiveClosure()
time4 := time.Now()
fmt.Println(fmt.Sprintf("2000*2000的传递闭包:%v", time4.Sub(time3)))
}
testSparse := func() {
fmt.Println(strings.Repeat("=", 20))
fmt.Println("测试稀疏矩阵")
// !稀疏矩阵
// 5000*5000的矩阵乘法 => 548.3657ms
N_5000 := 5000
mat := NewBooleanSquareMatrix(N_5000)
for i := 0; i < N_5000; i++ {
for j := 0; j < N_5000; j++ {
if rand.Intn(10) == 0 {
mat.Set(i, j, true)
}
}
}
time1 := time.Now()
Mul(mat, mat)
time2 := time.Now()
fmt.Println(fmt.Sprintf("5000*5000的矩阵乘法:%v", time2.Sub(time1)))
// 2000*2000的传递闭包 => 817.5958ms
N_2000 := 2000
mat = NewBooleanSquareMatrix(N_2000)
for i := 0; i < N_2000; i++ {
for j := 0; j < N_2000; j++ {
if rand.Intn(10) == 0 {
mat.Set(i, j, true)
}
}
}
time3 := time.Now()
mat.TransitiveClosure()
time4 := time.Now()
fmt.Println(fmt.Sprintf("2000*2000的传递闭包:%v", time4.Sub(time3)))
}
testDense := func() {
fmt.Println(strings.Repeat("=", 20))
fmt.Println("测试稠密矩阵")
// !稠密矩阵
// 5000*5000的矩阵乘法 => 491.0388ms
N_5000 := 5000
mat := NewBooleanSquareMatrix(N_5000)
for i := 0; i < N_5000; i++ {
for j := 0; j < N_5000; j++ {
mat.Set(i, j, true)
}
}
time1 := time.Now()
Mul(mat, mat)
time2 := time.Now()
fmt.Println(fmt.Sprintf("5000*5000的矩阵乘法:%v", time2.Sub(time1)))
// 2000*2000的传递闭包 => 827.1923ms
N_2000 := 2000
mat = NewBooleanSquareMatrix(N_2000)
for i := 0; i < N_2000; i++ {
for j := 0; j < N_2000; j++ {
mat.Set(i, j, true)
}
}
time3 := time.Now()
mat.TransitiveClosure()
time4 := time.Now()
fmt.Println(fmt.Sprintf("2000*2000的传递闭包:%v", time4.Sub(time3)))
}
testRandom()
testSparse()
testDense()
}
// trailing zero table
var _BSF [1e4 + 10]int
func init() {
for i := range _BSF {
_BSF[i] = bits.TrailingZeros(uint(i))
}
}
// 布尔方阵.
type BooleanSquareMatrix struct {
N int
bs []Bitset
dp []Bitset // 在计算矩阵乘法时用到
}
// n<=1e4.
func NewBooleanSquareMatrix(n int) *BooleanSquareMatrix {
bs := make([]Bitset, n)
for i := range bs {
bs[i] = NewBitset(n)
}
return &BooleanSquareMatrix{N: n, bs: bs}
}
// n<=1e4.
func Eye(n int) *BooleanSquareMatrix {
res := NewBooleanSquareMatrix(n)
for i := 0; i < n; i++ {
res.bs[i].Set(i)
}
return res
}
func Pow(mat *BooleanSquareMatrix, k int) *BooleanSquareMatrix {
return mat.Copy().IPow(k)
}
func Mul(mat1, mat2 *BooleanSquareMatrix) *BooleanSquareMatrix {
return mat1.Copy().IMul(mat2)
}
func Add(mat1, mat2 *BooleanSquareMatrix) *BooleanSquareMatrix {
return mat1.Copy().IAdd(mat2)
}
// (A + I)^n 是传递闭包.
func (bm *BooleanSquareMatrix) TransitiveClosure() *BooleanSquareMatrix {
n := bm.N
newMat := Eye(n).IAdd(bm)
newMat.IPow(n)
return newMat
}
func (bm *BooleanSquareMatrix) IPow(k int) *BooleanSquareMatrix {
res := Eye(bm.N)
for k > 0 {
if k&1 == 1 {
res.IMul(bm)
}
bm.IMul(bm)
k >>= 1
}
res.bs, bm.bs = bm.bs, res.bs
return bm
}
// O(n^3/wlogn),这里logn指的是分块的大小.
func (bm *BooleanSquareMatrix) IMul(mat *BooleanSquareMatrix) *BooleanSquareMatrix {
n := mat.N
res := NewBooleanSquareMatrix(n)
step := 8 // !理论最优是logn,实际取8效果最好(n为5000时)
bm._createDpIfAbsent(step, n)
dp := bm.dp
for l, r := 0, step; l != n; l, r = r, r+step {
if r > n {
r = n
}
for s := 1; s < (1 << step); s++ {
bsf := _BSF[s]
if l+bsf < n {
dp[s] = Or(dp[s^(1<<bsf)], mat.bs[l+bsf]) // Xor => f2矩阵乘法
} else {
dp[s] = dp[s^(1<<bsf)]
}
}
for i, now := 0, 0; i != n; i, now = i+1, 0 {
for j := l; j != r; j++ {
if bm.bs[i].Has(j) {
now ^= 1 << (j - l)
}
}
res.bs[i].IOr(dp[now]) // IXor => f2矩阵乘法
}
}
bm.bs, res.bs = res.bs, bm.bs
return res
}
func (bm *BooleanSquareMatrix) IAdd(mat *BooleanSquareMatrix) *BooleanSquareMatrix {
for i := 0; i < bm.N; i++ {
bm.bs[i].IOr(mat.bs[i])
}
return bm
}
func (bm *BooleanSquareMatrix) Copy() *BooleanSquareMatrix {
bs := make([]Bitset, bm.N)
for i := range bs {
bs[i] = bm.bs[i].Copy()
}
return &BooleanSquareMatrix{N: bm.N, bs: bs, dp: bm.dp}
}
func (bm *BooleanSquareMatrix) Get(row, col int) bool {
return bm.bs[row].Has(col)
}
func (bm *BooleanSquareMatrix) Set(row, col int, b bool) {
if b {
bm.bs[row].Set(col)
} else {
bm.bs[row].Reset(col)
}
}
// To 2D grid.
func (mat *BooleanSquareMatrix) String() string {
n := mat.N
grid := make([][]int, n)
for i := 0; i < n; i++ {
grid[i] = make([]int, n)
for j := 0; j < n; j++ {
if mat.Get(i, j) {
grid[i][j] = 1
} else {
grid[i][j] = 0
}
}
}
sb := strings.Builder{}
sb.WriteString(fmt.Sprintf("BooleanSquareMatrix(%d,%d)\n", n, n))
for i := 0; i < n; i++ {
for j := 0; j < n; j++ {
sb.WriteString(fmt.Sprintf("%d ", grid[i][j]))
}
sb.WriteString("\n")
}
return sb.String()
}
func (mat *BooleanSquareMatrix) _createDpIfAbsent(step int, n int) {
if mat.dp == nil {
dp := make([]Bitset, 1<<step)
for i := range dp {
dp[i] = NewBitset(n)
}
mat.dp = dp
}
}
const _w = bits.UintSize
type Bitset []uint
func NewBitset(n int) Bitset { return make(Bitset, n/_w+1) } // (n+_w-1)/_w
func (b Bitset) Has(p int) bool { return b[p/_w]&(1<<(p%_w)) != 0 }
func (b Bitset) Flip(p int) { b[p/_w] ^= 1 << (p % _w) }
func (b Bitset) Set(p int) { b[p/_w] |= 1 << (p % _w) }
func (b Bitset) Reset(p int) { b[p/_w] &^= 1 << (p % _w) }
func (b Bitset) Copy() Bitset {
res := make(Bitset, len(b))
copy(res, b)
return res
}
// 将 c 的元素合并进 b
func (b Bitset) IOr(c Bitset) Bitset {
for i, v := range c {
b[i] |= v
}
return b
}
// !f2上的加法
func (b Bitset) IXOr(c Bitset) {
for i, v := range c {
b[i] ^= v
}
}
func Or(a, b Bitset) Bitset {
res := make(Bitset, len(a))
for i, v := range a {
res[i] = v | b[i]
}
return res
}
func Xor(a, b Bitset) Bitset {
res := make(Bitset, len(a))
for i, v := range a {
res[i] = v ^ b[i]
}
return res
}