結果

問題 No.1340 おーじ君をさがせ
ユーザー 草苺奶昔草苺奶昔
提出日時 2023-06-05 13:55:07
言語 Go
(1.22.1)
結果
AC  
実行時間 25 ms / 2,000 ms
コード長 8,103 bytes
コンパイル時間 12,437 ms
コンパイル使用メモリ 229,184 KB
実行使用メモリ 7,916 KB
最終ジャッジ日時 2024-06-09 05:09:44
合計ジャッジ時間 14,441 ms
ジャッジサーバーID
(参考情報)
judge3 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 2 ms
6,816 KB
testcase_02 AC 2 ms
6,812 KB
testcase_03 AC 1 ms
6,944 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 1 ms
6,940 KB
testcase_06 AC 1 ms
6,940 KB
testcase_07 AC 1 ms
6,944 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 1 ms
6,944 KB
testcase_10 AC 2 ms
6,940 KB
testcase_11 AC 7 ms
6,940 KB
testcase_12 AC 3 ms
6,940 KB
testcase_13 AC 6 ms
6,940 KB
testcase_14 AC 8 ms
6,940 KB
testcase_15 AC 8 ms
6,940 KB
testcase_16 AC 3 ms
6,940 KB
testcase_17 AC 4 ms
6,940 KB
testcase_18 AC 6 ms
6,940 KB
testcase_19 AC 3 ms
6,944 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 14 ms
6,944 KB
testcase_22 AC 18 ms
7,784 KB
testcase_23 AC 14 ms
6,940 KB
testcase_24 AC 19 ms
7,912 KB
testcase_25 AC 11 ms
6,944 KB
testcase_26 AC 7 ms
6,940 KB
testcase_27 AC 6 ms
6,944 KB
testcase_28 AC 11 ms
6,940 KB
testcase_29 AC 6 ms
6,940 KB
testcase_30 AC 14 ms
6,944 KB
testcase_31 AC 25 ms
7,912 KB
testcase_32 AC 23 ms
7,916 KB
testcase_33 AC 23 ms
7,916 KB
testcase_34 AC 22 ms
7,912 KB
testcase_35 AC 25 ms
7,912 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 9 ms
6,944 KB
testcase_38 AC 24 ms
7,912 KB
testcase_39 AC 12 ms
6,940 KB
testcase_40 AC 12 ms
6,940 KB
testcase_41 AC 12 ms
6,940 KB
testcase_42 AC 1 ms
6,940 KB
testcase_43 AC 2 ms
6,940 KB
testcase_44 AC 2 ms
6,940 KB
testcase_45 AC 2 ms
6,940 KB
testcase_46 AC 6 ms
6,940 KB
testcase_47 AC 6 ms
6,944 KB
testcase_48 AC 7 ms
6,944 KB
testcase_49 AC 5 ms
6,944 KB
testcase_50 AC 5 ms
6,944 KB
testcase_51 AC 4 ms
6,944 KB
testcase_52 AC 8 ms
6,940 KB
testcase_53 AC 8 ms
6,940 KB
testcase_54 AC 8 ms
6,944 KB
testcase_55 AC 7 ms
6,940 KB
testcase_56 AC 2 ms
6,944 KB
testcase_57 AC 2 ms
6,940 KB
testcase_58 AC 2 ms
6,940 KB
testcase_59 AC 3 ms
6,944 KB
testcase_60 AC 2 ms
6,944 KB
testcase_61 AC 3 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

package main

import (
	"bufio"
	"fmt"
	"math/bits"
	"math/rand"
	"os"
	"strings"
	"time"
)

func main() {
	yuki1340()
	// test()
}

// https://yukicoder.me/problems/no/1340
// 给定一个n个点m条边的有向图,求t步后可能所在的顶点个数(每一步必须移动到一个相邻点).
// n<=100 m<=1e4 t<=1e18
func yuki1340() {

	in := bufio.NewReader(os.Stdin)
	out := bufio.NewWriter(os.Stdout)
	defer out.Flush()

	var n, m, t int
	fmt.Fscan(in, &n, &m, &t)
	mat := NewBooleanSquareMatrix(n)
	for i := 0; i < m; i++ {
		var a, b int
		fmt.Fscan(in, &a, &b)
		mat.Set(a, b, true)
	}
	mat.IPow(t)

	res := 0
	for i := 0; i < n; i++ {
		if mat.Get(0, i) {
			res++
		}
	}
	fmt.Fprintln(out, res)
}

// https://leetcode.cn/problems/course-schedule-iv/
func checkIfPrerequisite(numCourses int, prerequisites [][]int, queries [][]int) []bool {
	mat := NewBooleanSquareMatrix(numCourses)
	for _, p := range prerequisites {
		mat.Set(p[0], p[1], true)
	}
	trans := mat.TransitiveClosure()
	res := make([]bool, len(queries))
	for i, q := range queries {
		res[i] = trans.Get(q[0], q[1])
	}
	return res
}

func test() {
	mat := NewBooleanSquareMatrix(3)
	mat.Set(0, 0, true)
	mat.Set(0, 1, true)
	mat.Set(1, 2, true)
	mat.Set(1, 0, true)

	testRandom := func() {
		fmt.Println(strings.Repeat("=", 20))
		fmt.Println("测试随机矩阵")
		// !随机01矩阵
		// 5000*5000的矩阵乘法 => 697.955ms
		N_5000 := 5000
		mat := NewBooleanSquareMatrix(N_5000)
		for i := 0; i < N_5000; i++ {
			for j := 0; j < N_5000; j++ {
				if rand.Intn(2) == 0 {
					mat.Set(i, j, true)
				}
			}
		}
		time1 := time.Now()
		Mul(mat, mat)
		time2 := time.Now()
		fmt.Println(fmt.Sprintf("5000*5000的矩阵乘法:%v", time2.Sub(time1)))

		// 2000*2000的传递闭包 => 830.0099ms
		N_2000 := 2000
		mat = NewBooleanSquareMatrix(N_2000)
		for i := 0; i < N_2000; i++ {
			for j := 0; j < N_2000; j++ {
				if rand.Intn(2) == 0 {
					mat.Set(i, j, true)
				}
			}
		}
		time3 := time.Now()
		mat.TransitiveClosure()
		time4 := time.Now()
		fmt.Println(fmt.Sprintf("2000*2000的传递闭包:%v", time4.Sub(time3)))
	}

	testSparse := func() {
		fmt.Println(strings.Repeat("=", 20))
		fmt.Println("测试稀疏矩阵")
		// !稀疏矩阵
		// 5000*5000的矩阵乘法 => 548.3657ms
		N_5000 := 5000
		mat := NewBooleanSquareMatrix(N_5000)
		for i := 0; i < N_5000; i++ {
			for j := 0; j < N_5000; j++ {
				if rand.Intn(10) == 0 {
					mat.Set(i, j, true)
				}
			}
		}
		time1 := time.Now()
		Mul(mat, mat)
		time2 := time.Now()
		fmt.Println(fmt.Sprintf("5000*5000的矩阵乘法:%v", time2.Sub(time1)))

		// 2000*2000的传递闭包 => 817.5958ms
		N_2000 := 2000
		mat = NewBooleanSquareMatrix(N_2000)
		for i := 0; i < N_2000; i++ {
			for j := 0; j < N_2000; j++ {
				if rand.Intn(10) == 0 {
					mat.Set(i, j, true)
				}
			}
		}
		time3 := time.Now()
		mat.TransitiveClosure()
		time4 := time.Now()
		fmt.Println(fmt.Sprintf("2000*2000的传递闭包:%v", time4.Sub(time3)))
	}

	testDense := func() {
		fmt.Println(strings.Repeat("=", 20))
		fmt.Println("测试稠密矩阵")
		// !稠密矩阵
		// 5000*5000的矩阵乘法 => 491.0388ms
		N_5000 := 5000
		mat := NewBooleanSquareMatrix(N_5000)
		for i := 0; i < N_5000; i++ {
			for j := 0; j < N_5000; j++ {
				mat.Set(i, j, true)
			}
		}
		time1 := time.Now()
		Mul(mat, mat)
		time2 := time.Now()
		fmt.Println(fmt.Sprintf("5000*5000的矩阵乘法:%v", time2.Sub(time1)))

		// 2000*2000的传递闭包 => 827.1923ms
		N_2000 := 2000
		mat = NewBooleanSquareMatrix(N_2000)
		for i := 0; i < N_2000; i++ {
			for j := 0; j < N_2000; j++ {
				mat.Set(i, j, true)
			}
		}
		time3 := time.Now()
		mat.TransitiveClosure()
		time4 := time.Now()
		fmt.Println(fmt.Sprintf("2000*2000的传递闭包:%v", time4.Sub(time3)))
	}

	testRandom()
	testSparse()
	testDense()
}

// trailing zero table
var _BSF [1e4 + 10]int

func init() {
	for i := range _BSF {
		_BSF[i] = bits.TrailingZeros(uint(i))
	}
}

// 布尔方阵.
type BooleanSquareMatrix struct {
	N  int
	bs []Bitset
	dp []Bitset // 在计算矩阵乘法时用到
}

// n<=1e4.
func NewBooleanSquareMatrix(n int) *BooleanSquareMatrix {
	bs := make([]Bitset, n)
	for i := range bs {
		bs[i] = NewBitset(n)
	}
	return &BooleanSquareMatrix{N: n, bs: bs}
}

// n<=1e4.
func Eye(n int) *BooleanSquareMatrix {
	res := NewBooleanSquareMatrix(n)
	for i := 0; i < n; i++ {
		res.bs[i].Set(i)
	}
	return res
}

func Pow(mat *BooleanSquareMatrix, k int) *BooleanSquareMatrix {
	return mat.Copy().IPow(k)
}

func Mul(mat1, mat2 *BooleanSquareMatrix) *BooleanSquareMatrix {
	return mat1.Copy().IMul(mat2)
}

func Add(mat1, mat2 *BooleanSquareMatrix) *BooleanSquareMatrix {
	return mat1.Copy().IAdd(mat2)
}

// (A + I)^n 是传递闭包.
func (bm *BooleanSquareMatrix) TransitiveClosure() *BooleanSquareMatrix {
	n := bm.N
	newMat := Eye(n).IAdd(bm)
	newMat.IPow(n)
	return newMat
}

func (bm *BooleanSquareMatrix) IPow(k int) *BooleanSquareMatrix {
	res := Eye(bm.N)
	for k > 0 {
		if k&1 == 1 {
			res.IMul(bm)
		}
		bm.IMul(bm)
		k >>= 1
	}
	res.bs, bm.bs = bm.bs, res.bs
	return bm
}

// O(n^3/wlogn),这里logn指的是分块的大小.
func (bm *BooleanSquareMatrix) IMul(mat *BooleanSquareMatrix) *BooleanSquareMatrix {
	n := mat.N
	res := NewBooleanSquareMatrix(n)
	step := 8 // !理论最优是logn,实际取8效果最好(n为5000时)
	bm._createDpIfAbsent(step, n)
	dp := bm.dp

	for l, r := 0, step; l != n; l, r = r, r+step {
		if r > n {
			r = n
		}
		for s := 1; s < (1 << step); s++ {
			bsf := _BSF[s]
			if l+bsf < n {
				dp[s] = Or(dp[s^(1<<bsf)], mat.bs[l+bsf]) // Xor => f2矩阵乘法
			} else {
				dp[s] = dp[s^(1<<bsf)]
			}
		}
		for i, now := 0, 0; i != n; i, now = i+1, 0 {
			for j := l; j != r; j++ {
				if bm.bs[i].Has(j) {
					now ^= 1 << (j - l)
				}
			}
			res.bs[i].IOr(dp[now]) // IXor => f2矩阵乘法
		}
	}

	bm.bs, res.bs = res.bs, bm.bs
	return res
}

func (bm *BooleanSquareMatrix) IAdd(mat *BooleanSquareMatrix) *BooleanSquareMatrix {
	for i := 0; i < bm.N; i++ {
		bm.bs[i].IOr(mat.bs[i])
	}
	return bm
}

func (bm *BooleanSquareMatrix) Copy() *BooleanSquareMatrix {
	bs := make([]Bitset, bm.N)
	for i := range bs {
		bs[i] = bm.bs[i].Copy()
	}
	return &BooleanSquareMatrix{N: bm.N, bs: bs, dp: bm.dp}
}

func (bm *BooleanSquareMatrix) Get(row, col int) bool {
	return bm.bs[row].Has(col)
}

func (bm *BooleanSquareMatrix) Set(row, col int, b bool) {
	if b {
		bm.bs[row].Set(col)
	} else {
		bm.bs[row].Reset(col)
	}
}

// To 2D grid.
func (mat *BooleanSquareMatrix) String() string {
	n := mat.N
	grid := make([][]int, n)
	for i := 0; i < n; i++ {
		grid[i] = make([]int, n)
		for j := 0; j < n; j++ {
			if mat.Get(i, j) {
				grid[i][j] = 1
			} else {
				grid[i][j] = 0
			}
		}
	}

	sb := strings.Builder{}
	sb.WriteString(fmt.Sprintf("BooleanSquareMatrix(%d,%d)\n", n, n))
	for i := 0; i < n; i++ {
		for j := 0; j < n; j++ {
			sb.WriteString(fmt.Sprintf("%d ", grid[i][j]))
		}
		sb.WriteString("\n")
	}

	return sb.String()
}

func (mat *BooleanSquareMatrix) _createDpIfAbsent(step int, n int) {
	if mat.dp == nil {
		dp := make([]Bitset, 1<<step)
		for i := range dp {
			dp[i] = NewBitset(n)
		}
		mat.dp = dp
	}
}

const _w = bits.UintSize

type Bitset []uint

func NewBitset(n int) Bitset { return make(Bitset, n/_w+1) } // (n+_w-1)/_w

func (b Bitset) Has(p int) bool { return b[p/_w]&(1<<(p%_w)) != 0 }
func (b Bitset) Flip(p int)     { b[p/_w] ^= 1 << (p % _w) }
func (b Bitset) Set(p int)      { b[p/_w] |= 1 << (p % _w) }
func (b Bitset) Reset(p int)    { b[p/_w] &^= 1 << (p % _w) }

func (b Bitset) Copy() Bitset {
	res := make(Bitset, len(b))
	copy(res, b)
	return res
}

// 将 c 的元素合并进 b
func (b Bitset) IOr(c Bitset) Bitset {
	for i, v := range c {
		b[i] |= v
	}
	return b
}

// !f2上的加法
func (b Bitset) IXOr(c Bitset) {
	for i, v := range c {
		b[i] ^= v
	}
}

func Or(a, b Bitset) Bitset {
	res := make(Bitset, len(a))
	for i, v := range a {
		res[i] = v | b[i]
	}
	return res
}

func Xor(a, b Bitset) Bitset {
	res := make(Bitset, len(a))
	for i, v := range a {
		res[i] = v ^ b[i]
	}
	return res
}
0