結果

問題 No.187 中華風 (Hard)
ユーザー tonegawatonegawa
提出日時 2023-06-07 14:34:20
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
WA  
実行時間 -
コード長 29,260 bytes
コンパイル時間 3,330 ms
コンパイル使用メモリ 190,132 KB
実行使用メモリ 6,824 KB
最終ジャッジ日時 2024-12-29 19:35:39
合計ジャッジ時間 6,254 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 WA -
testcase_01 WA -
testcase_02 AC 82 ms
6,816 KB
testcase_03 AC 79 ms
6,816 KB
testcase_04 AC 95 ms
6,816 KB
testcase_05 AC 97 ms
6,816 KB
testcase_06 AC 93 ms
6,816 KB
testcase_07 AC 92 ms
6,816 KB
testcase_08 AC 70 ms
6,820 KB
testcase_09 AC 73 ms
6,816 KB
testcase_10 AC 70 ms
6,820 KB
testcase_11 AC 89 ms
6,816 KB
testcase_12 AC 90 ms
6,820 KB
testcase_13 AC 30 ms
6,820 KB
testcase_14 AC 31 ms
6,816 KB
testcase_15 WA -
testcase_16 WA -
testcase_17 AC 2 ms
6,816 KB
testcase_18 WA -
testcase_19 AC 2 ms
6,816 KB
testcase_20 AC 70 ms
6,816 KB
testcase_21 AC 2 ms
6,816 KB
testcase_22 AC 91 ms
6,816 KB
testcase_23 AC 2 ms
6,820 KB
testcase_24 AC 2 ms
6,816 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#line 2 ".lib/template.hpp"
#include <iostream>
#include <string>
#include <vector>
#include <array>
#include <tuple>
#include <stack>
#include <queue>
#include <deque>
#include <algorithm>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include <bitset>
#include <cmath>
#include <functional>
#include <cassert>
#include <climits>
#include <iomanip>
#include <numeric>
#include <memory>
#include <random>
#define allof(obj) (obj).begin(), (obj).end()
#define range(i, l, r) for(int i=l;i<r;i++)
#define bit_subset(i, S) for(int i=S, zero_cnt=0;(zero_cnt+=i==S)<2;i=(i-1)&S)
#define bit_kpop(i, n, k) for(int i=(1<<k)-1,x_bit,y_bit;i<(1<<n);x_bit=(i&-i),y_bit=i+x_bit,i=(!i?(1<<n):((i&~y_bit)/x_bit>>1)|y_bit))
#define bit_kth(i, k) ((i >> k)&1)
#define bit_highest(i) (i?63-__builtin_clzll(i):-1)
#define bit_lowest(i) (i?__builtin_ctzll(i):-1)
using ll = long long;
using ld = long double;
using ul = uint64_t;
using pi = std::pair<int, int>;
using pl = std::pair<ll, ll>;
template<typename T>
using vec = std::vector<T>;
using namespace std;

template<typename F, typename S>
std::ostream &operator<<(std::ostream &dest, const std::pair<F, S> &p){
  dest << p.first << ' ' << p.second;
  return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::vector<std::vector<T>> &v){
  int sz = v.size();
  if(sz==0) return dest;
  for(int i=0;i<sz;i++){
    int m = v[i].size();
    for(int j=0;j<m;j++) dest << v[i][j] << (i!=sz-1&&j==m-1?'\n':' ');
  }
  return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::vector<T> &v){
  int sz = v.size();
  if(sz==0) return dest;
  for(int i=0;i<sz-1;i++) dest << v[i] << ' ';
  dest << v[sz-1];
  return dest;
}
template<typename T, size_t sz>
std::ostream &operator<<(std::ostream &dest, const std::array<T, sz> &v){
  if(sz==0) return dest;
  for(int i=0;i<sz-1;i++) dest << v[i] << ' ';
  dest << v[sz-1];
  return dest;
}
template<typename T>
std::ostream &operator<<(std::ostream &dest, const std::set<T> &v){
  for(auto itr=v.begin();itr!=v.end();){
    dest << *itr;
    itr++;
    if(itr!=v.end()) dest << ' ';
  }
  return dest;
}
template<typename T, typename E>
std::ostream &operator<<(std::ostream &dest, const std::map<T, E> &v){
  for(auto itr=v.begin();itr!=v.end();){
    dest << '(' << itr->first << ", " << itr->second << ')';
    itr++;
    if(itr!=v.end()) dest << '\n';
  }
  return dest;
}
template<typename T>
vector<T> make_vec(size_t sz, T val){return std::vector<T>(sz, val);}
template<typename T, typename... Tail>
auto make_vec(size_t sz, Tail ...tail){
  return std::vector<decltype(make_vec<T>(tail...))>(sz, make_vec<T>(tail...));
}
template<typename T>
vector<T> read_vec(size_t sz){
  std::vector<T> v(sz);
  for(int i=0;i<sz;i++) std::cin >> v[i];
  return v;
}
template<typename T, typename... Tail>
auto read_vec(size_t sz, Tail ...tail){
  auto v = std::vector<decltype(read_vec<T>(tail...))>(sz);
  for(int i=0;i<sz;i++) v[i] = read_vec<T>(tail...);
  return v;
}

void io_init(){
  std::cin.tie(nullptr);
  std::ios::sync_with_stdio(false);
}
#line 3 ".lib/math/integer.hpp"
#include <cstdint>
#line 8 ".lib/math/integer.hpp"
#include <limits>
#line 13 ".lib/math/integer.hpp"

// a^k >= xとなる最小のa^k
uint64_t ceil_pow(uint64_t x, uint64_t a){
  assert(a > 1);
  if(x == 0) return 1;
  static uint64_t INF = std::numeric_limits<uint64_t>::max();
  if(a == 2){
    uint64_t ret = uint64_t(1) << (63 - __builtin_clzll(x));
    if(ret == x) return x;
    assert(ret <= (INF >> 1));
    return ret << 1;
  }
  if(a > 10){
    uint64_t ret = 1;
    while(true){
      if(ret > x / a) break;
      ret *= a;
    }
    if(ret == x) return ret;
    assert(ret <= INF / a);
    return ret * a;
  }
  static std::vector<std::vector<uint64_t>> pow_table(11);
  if(pow_table[a].empty()){
    uint64_t tmp = 1;
    pow_table[a].push_back(1);
    while(true){
      if(tmp > INF / a) break;
      pow_table[a].push_back(tmp *= a);
    }
  }
  auto itr = std::lower_bound(pow_table[a].begin(), pow_table[a].end(), x);
  assert(itr != pow_table[a].end());
  return *itr;
}

// 2^k >= xとなる最小の2^k
uint64_t ceil_2_pow(uint64_t x){
  static uint64_t INF = std::numeric_limits<uint64_t>::max();
  uint64_t ret = uint64_t(1) << (63 - __builtin_clzll(x));
  if(ret == x) return x;
  assert(ret <= (INF >> 1));
  return ret << 1;
}

// a^k <= xを満たす最大のa^k
uint64_t floor_pow(uint64_t x, uint64_t a){
  assert(x > 0 && a > 1);
  if(a == 2) return uint64_t(1) << (63 - __builtin_clzll(x));
  if(a > 10){
    uint64_t ret = 1;
    while(true){
      if(ret > x / a) return ret;
      ret *= a;
    }
  }
  static std::vector<std::vector<uint64_t>> pow_table(11);
  static uint64_t INF = std::numeric_limits<uint64_t>::max();
  if(pow_table[a].empty()){
    uint64_t tmp = 1;
    pow_table[a].push_back(1);
    while(true){
      if(tmp > INF / a) break;
      pow_table[a].push_back(tmp *= a);
    }
  }
  return *--std::upper_bound(pow_table[a].begin(), pow_table[a].end(), x);
}

// 10 = 10 * 1 + 0
// 10 =  9 * 1 + 1
// 10 =  8 * 1 + 2
// 10 =  7 * 1 + 3
// 10 =  6 * 1 + 4
// 10 =  5 * 2 = 0
// 10 =  4 * 2 + 2
// 10 =  3 * 3 = 1
// 10 =  2 * 5 + 0
// 10 =  1 * 10 + 10

// 商としてありえる数は高々 2 * √x 通り
// また, [dmin, dmax]が存在して, この区間の数で割った商は全て等しく, 区間に含まれない任意の数で割った商とは異なる
// 可能な組{商, dmin, dmax}を列挙

// 商が[√x, x]の時はdmin = dmax
std::vector<std::array<long long, 3>> divrange(long long x){
  if(x == 1) return {{1, 1, 1}};
  std::vector<std::array<long long, 3>> l{{x, 1, 1}}, r{{1, x, x}};
  int ls = 0, rs = 0;
  long long i = 2;
  for(; i * i <= x; i++){
    long long d = x / i;
    if(l[ls][0] != d) l.push_back({d, i, i}), ls++;
    else l[ls][1] = i;
    if(i * i == x) continue;
    if(r[rs][0] != i) r[rs][1] = d + 1, r.push_back({i, d, d}), rs++;
    else r[rs][2] = x;
  }
  if(l[ls][0] == r[rs][0]) l[ls][2] = r[rs][2], r.pop_back();
  std::reverse(r.begin(), r.end());
  r[0][1] = i;
  l.insert(l.end(), r.begin(), r.end());
  return l;
}

// a ^ k <= xを満たす最大のa
uint64_t kth_root_stable(uint64_t x, uint64_t k){
  if(!x) return 0;
  if(k == 1 || x == 1) return x;
  if(k >= 64) return 1;
  uint64_t l = 1, r = x;
  const static uint64_t threshold = std::numeric_limits<uint64_t>::max();
  while(r - l > 1){
    bool f = false;
    uint64_t mid = l + ((r - l) >> 1), z = 1;
    uint64_t lim = threshold / mid;
    for(int i = 0; i < k; i++){
      if(z > lim){
        f = true;
        break;
      }
      z *= mid;
    }
    if(f | (z > x)) r = mid;
    else l = mid;
  }
  return l;
}

// a^k <= x を満たす最大のa
uint64_t kth_root_fast(uint64_t x, uint64_t k){
  if(x <= 1) return (!k ? 1 : x);
  if(k <= 2) return (k <=1 ? !k ? 1 : x : sqrtl(x));
  if(k >= 64||!(x >> k)) return 1;
  const static int sz[8] = {40, 31, 27, 24, 22, 21, 20, 19};
  static std::vector<std::vector<uint64_t>> table;
  if(table.empty()){
    table.resize(40);
    for(int i = 0; i < 40; i++){
      for(uint64_t j = 0; j < 8 && sz[j] > i; j++){
        table[i].push_back((!i ? 1 : table[i - 1][j]) *(j + 3));
      }
    }
  }
  if(k >= 19){
    int ans = 10;
    for(;ans > 2; ans--){
      if(sz[ans - 3]<k || table[k - 1][ans - 3] > x) continue;
      return ans;
    }
    return 2;
  }
  uint64_t r = (k != 3 ? pow(x, (1.0 + 1e-6) / k) : cbrt(x) + 1);
  const static uint64_t threshold = std::numeric_limits<uint64_t>::max();
  while(true){
    uint64_t lim = threshold / r, z = 1;
    for(int i = 0; i < k; i++, z *= r) if(z > lim) goto upper;
    if(z > x) upper: r--;
    else break;
  }
  return r;
}


namespace prime_sieve{
  std::vector<int> primes, min_factor;// 素数, 各数を割り切る最小の素数
  // O(MAX_N loglog MAX_N)
  void init(int MAX_N){
    min_factor.resize(MAX_N + 1, -1);
    for(int i = 2; i <= MAX_N; i++){
      if(min_factor[i] == -1){
        primes.push_back(i);
        min_factor[i] = i;
      }
      for(int p : primes){
        if((long long)p * i > MAX_N || p > min_factor[i]) break;
        min_factor[p * i] = p;
      }
    }
  }
  bool is_prime(int n){
    assert(n < min_factor.size());
    return n == min_factor[n];
  }
  // {{素因数, 数}}, O(log n)
  std::vector<std::pair<int, int>> factorize(int n){
    assert(n < min_factor.size());
    std::vector<std::pair<int, int>> ret;
    while(n > 1){
      int cnt = 0, f = min_factor[n];
      while(n % f == 0){
        n /= f;
        cnt++;
      }
      ret.push_back({f, cnt});
    }
    return ret;
  }
  // 約数列挙, O(√n)
  std::vector<int> divisor(int n){
    auto p = factorize(n);
    std::vector<std::vector<int>> x;
    for(int i = 0; i < p.size(); i++){
      x.push_back(std::vector<int>{1});
      for(int j = 0; j < p[i].second; j++) x[i].push_back(x[i][j] * p[i].first);
    }
    int l = 0, r = 1;
    std::vector<int> ret{1};
    for(int i = 0; i < x.size(); i++){
      for(auto e : x[i]){
        for(int j = l; j < r; j++){
          ret.push_back(ret[j] * e);
        }
      }
      l = r;
      r = ret.size();
    }
    return std::vector<int>(ret.begin() + l, ret.end());
  }
};


std::vector<long long> v{1,2,4,6,12,24,36,48,60,120,180,240,360,720,840,1260,1680,2520,5040,7560,10080,15120,20160,25200,27720,45360,50400,55440,83160,110880,166320,221760,277200,332640,498960,554400,665280,720720,1081080,1441440,2162160,2882880,3603600,4324320,6486480,7207200,8648640,10810800,14414400,17297280,21621600,32432400,36756720,43243200,61261200,73513440,110270160,122522400,147026880,183783600,245044800,294053760,367567200,551350800,698377680,735134400,1102701600,1396755360,2095133040,2205403200,2327925600,2793510720,3491888400,4655851200,5587021440,6983776800,10475665200,13967553600,20951330400,27935107200,41902660800,48886437600,64250746560,73329656400,80313433200,97772875200,128501493120,146659312800,160626866400,240940299600,293318625600,321253732800,481880599200,642507465600,963761198400,1124388064800,1606268664000,1686582097200,1927522396800,2248776129600,3212537328000,3373164194400,4497552259200,6746328388800,8995104518400,9316358251200,13492656777600,18632716502400,26985313555200,27949074753600,32607253879200,46581791256000,48910880818800,55898149507200,65214507758400,93163582512000,97821761637600,130429015516800,195643523275200,260858031033600,288807105787200,391287046550400,577614211574400,782574093100800,866421317361600,1010824870255200,1444035528936000,1516237305382800,1732842634723200,2021649740510400,2888071057872000,3032474610765600,4043299481020800,6064949221531200,8086598962041600,10108248702552000,1212898443062400,18194847664593600,20216497405104000,24259796886124800,30324746107656000,36389695329187200,48519593772249600,60649492215312000,72779390658374400,74801040398884800,106858629141264000,112201560598327200,149602080797769600,224403121196654400,299204161595539200,374005201994424000,448806242393308800,673209363589963200,748010403988848000,897612484786617600};

std::vector<long long> ans{1,2,3,4,6,8,9,10,12,16,18,20,24,30,32,36,40,48,60,64,72,80,84,90,96,100,108,120,128,144,160,168,180,192,200,216,224,240,256,288,320,336,360,384,400,432,448,480,504,512,576,600,640,672,720,768,800,864,896,960,1008,1024,1152,1200,1280,1344,1440,1536,1600,1680,1728,1792,1920,2016,2048,2304,2400,2688,2880,3072,3360,3456,3584,3600,3840,4032,4096,4320,4608,4800,5040,5376,5760,6144,6720,6912,7168,7200,7680,8064,8192,8640,9216,10080,10368,10752,11520,12288,12960,13440,13824,14336,14400,15360,16128,16384,17280,18432,20160,20736,21504,23040,24576,25920,26880,27648,28672,28800,30720,32256,32768,34560,36864,40320,41472,43008,46080,48384,49152,51840,53760,55296,57600,61440,62208,64512,65536,69120,73728,80640,82944,86016,92160,96768,98304,103680
};

// 高度合成数(N以下の数の中で最も多い約数を持つ数)
// {N以下の高度合成数, その約数}
std::pair<long long, long long> highly_composite_number(long long N){
  assert(0 < N && N <= 1000000000000000000);
  int idx = upper_bound(v.begin(), v.end(), N) - v.begin() - 1;
  assert(idx != 0);
  return {v[idx], ans[idx]};
}
long long llpow(long long a, long long b){
  long long ret = 1, mul = a;
  while(b){
    if(b & 1) ret *= mul;
    mul *= mul;
    b >>= 1;
  }
  return ret;
}
long long gcd(long long _a, long long _b) {
  uint64_t a = abs(_a), b = abs(_b);
  if(a == 0) return b;
  if(b == 0) return a;
  int shift = __builtin_ctzll(a | b);
  a >>= __builtin_ctzll(a);
  do{
    b >>= __builtin_ctzll(b);
    if(a > b) std::swap(a, b);
    b -= a;
  }while(b);
  return (a << shift);
}
// 64bitに収まらない可能性あり
long long lcm(long long a, long long b){
  return __int128_t(a * b) / gcd(a, b);
}

std::tuple<long long, long long, long long> extgcd(long long a, long long b){
  long long x, y;
  for(long long u = y = 1, v = x = 0; a;){
    long long q = b / a;
    std::swap(x -= q * u, u);
    std::swap(y -= q * v, v);
    std::swap(b -= q * a, a);
  }
  return {x, y, b};//return {x, y, gcd(a, b)} s.t. ax + by = gcd(a, b)
}

// ak + b のl <= k < rにおける和
template<typename T = long long>
T arithmetic_sum(T a, T b, T l, T r){
  return a * (r * (r - 1) - l * (l - 1)) / 2 + b * (r - l);
}

// !
struct barrett_reduction{
  unsigned int mod;
  unsigned long long m;
  barrett_reduction(unsigned int _mod) : mod(_mod){
    m = ((__uint128_t)1 << 64) / mod;
  }
  unsigned int reduce(unsigned int a){
    unsigned long long q = ((__uint128_t)a * m) >> 64;
    a -= q * mod; // 0 <= a < 2 * mod
    // return a;
    return a >= mod ? a - mod : a;
  }
  unsigned int mul(unsigned int a, unsigned int b){
    return reduce((unsigned long long)a * b);
  }
  // {gcd(a, mod), x}, such that a * x ≡ gcd(a, mod)
  std::pair<unsigned int, unsigned int> inv(unsigned int a){
    if(a >= mod) a = reduce(a);
    if(a == 0) return {mod, 0};
    unsigned int s = mod, t = a;
    long long m0 = 0, m1 = 1;
    while(t){
      int u = s / t;
      s -= t * u;
      m0 -= m1 * u;
      std::swap(m0, m1);
      std::swap(s, t);
    }
    if(m0 < 0) m0 += mod / s;
    return {s, m0};
  }
};
// 64bit mod対応
struct montgomery_reduction_64bit{
private:
  // [0, 2 * MOD)
  inline uint64_t reduce_unsafe(__uint128_t x) const{
    x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;
    return x;
  }
  void _set_mod(uint64_t mod){
    assert(mod < (1ULL << 63));
    MOD = mod;
    NEG_INV = 0;
    __uint128_t s = 1, t = 0;
    for(int i = 0; i < 64; i++){
      if (~t & 1) {
        t += MOD;
        NEG_INV += s;
      }
      t >>= 1;
      s <<= 1;
    }
    R2 = ((__uint128_t)1 << 64) % MOD;
    R2 = R2 * R2 % MOD;
  }
  __uint128_t MOD, NEG_INV, R2;
public:
  montgomery_reduction_64bit(){}
  montgomery_reduction_64bit(uint64_t mod){_set_mod(mod);}
  void set_mod(uint64_t mod){
    _set_mod(mod);
  }
  uint64_t mod()const{
    return MOD;
  }
  inline uint64_t generate(uint64_t x)const{
    return reduce((__uint128_t)x * R2);
  }
  inline uint64_t reduce(__uint128_t x)const{
    x = (x + ((uint64_t)x * (uint64_t)NEG_INV) * MOD) >> 64;
    return x < MOD ? x : x - MOD;
  }
  // [0, 2MOD)
  inline uint64_t mul(uint64_t mx, uint64_t my)const{
    return reduce_unsafe((__uint128_t)mx * my);
  }
  inline uint64_t mul_safe(uint64_t mx, uint64_t my)const{
    return reduce((__uint128_t)mx * my);
  }
  // [0, 2MOD)
  inline uint64_t add(uint64_t mx, uint64_t my)const{
    return (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);
  }
  inline uint64_t add_safe(uint64_t mx, uint64_t my)const{
    uint64_t res = (mx >= MOD ? mx - MOD : mx) + (my >= MOD ? my - MOD : my);
    return res >= MOD ? res - MOD : res;
  }
  // [0, 2MOD)
  inline uint64_t sub(uint64_t mx, uint64_t my)const{
    if(my >= MOD) my -= MOD;
    return mx >= my ? mx - my : mx + MOD - my;
  }
  inline uint64_t sub_safe(uint64_t mx, uint64_t my)const{
    if(my >= MOD) my -= MOD;
    uint64_t res = mx >= my ? mx - my : mx + MOD - my;
    return res >= MOD ? res - MOD : res;
  }
};
// maと戻り値はモンゴメリ表現
unsigned long long _mod_pow_mr(unsigned long long ma, unsigned long long b, const montgomery_reduction_64bit &mr){
  unsigned long long res = mr.generate(1), mul = ma;
  while(b){
    if(b & 1) res = mr.mul(res, mul);
    mul = mr.mul(mul, mul);
    b >>= 1;
  }
  if(res >= mr.mod()) return res - mr.mod();
  return res;
}
unsigned long long mod_pow_mr(unsigned long long a, unsigned long long b, unsigned long long m){
  montgomery_reduction_64bit mr(m);
  return mr.reduce(_mod_pow_mr(mr.generate(a), b, mr));
}
static std::vector<unsigned long long> generate_random_a(int k){
  static std::random_device seed_gen;
  static std::mt19937_64 engine(seed_gen());
  std::vector<unsigned long long> res(k);
  for(int i = 0; i < k; i++) res[i] = engine();
  return res;
}
bool _miller_rabin_mr(unsigned long long n, const montgomery_reduction_64bit &mr){
  static constexpr int k = 10;
  static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};
  static std::vector<unsigned long long> A = generate_random_a(k);
  static std::vector<unsigned long long> B{2, 3, 5, 7};// https://t5k.org/prove/prove2_3.html

  if(n <= 1) return false;
  if(n <= 50){
    for(int l = n < 20 ? 0 : 8, r = n < 20 ? 8 : 15; l < r; l++) if(small_p[l] == n) return true;
    return false;
  }
  if(!(n & 1)) return false;
  unsigned long long d = n - 1;
  unsigned long long one = mr.generate(1), mone = mr.generate(n - 1);
  d >>= __builtin_ctzll(d);
  for(unsigned long long a : (n < 118670087467 ? B : A)){
    if(a % n == 0) continue;
    unsigned long long d2s = d; // d * 2^s, 0 <= s <= (n - 1)が2で割れる回数
    unsigned long long y = _mod_pow_mr(mr.generate(a), d, mr);
    while(d2s != n - 1 && y != one && y != mone){
      y = mr.mul_safe(y, y);
      d2s <<= 1;
    }
    if(y != mone && !(d2s & 1)) return false;
  }
  return true;
}
bool miller_rabin_mr(unsigned long long n){
  montgomery_reduction_64bit mr(n);
  return _miller_rabin_mr(n, mr);
}
// https://en.wikipedia.org/wiki/Binary_GCD_algorithm
unsigned long long binary_gcd(unsigned long long a, unsigned long long b){
  if(!a || !b) return !a ? b : a;
  int shift = __builtin_ctzll(a | b); // [1] gcd(2a', 2b') = 2 * gcd(a', b')
  a >>= __builtin_ctzll(a);
  do{
    // if b is odd
    // gcd(2a', b) = gcd(a', b), if a = 2a'(a is even)
    // gcd(a, b) = gcd(|a - b|, min(a, b)), if a is odd
    b >>= __builtin_ctzll(b); // make b odd
    if(a > b) std::swap(a, b);
    b -= a;
  }while(b); // gcd(a, 0) = a
  return a << shift; // [1]
}
unsigned long long generate_random_prime(unsigned long long min_n = 2, unsigned long long max_n = ~0){
  static std::random_device seed_gen;
  static std::mt19937_64 engine(seed_gen());
  unsigned long long len = max_n - min_n + 1;
  // about 40 tries per iteration. https://en.wikipedia.org/wiki/Prime_number_theorem
  // It brokes when π(max_n) == π(min_n - 1)
  while(true){
    unsigned long long a = engine() % len + min_n;
    if(miller_rabin_mr(a)){
      return a;
    }
  }
}
namespace rho_factorization{
  unsigned long long rho(unsigned long long n){
    static std::vector<int> small_p{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};

    for(int sp : small_p) if(n % sp == 0) return sp; // n < 50

    montgomery_reduction_64bit mr(n);
    if(_miller_rabin_mr(n, mr)) return n;

    auto try_factorize = [n, mr](unsigned long long c){
      c = mr.generate(c);
      auto f = [mr, c](unsigned long long mx){
        return mr.add(mr.mul(mx, mx), c);
      };
      unsigned long long m = 1LL << ((64 - __builtin_clzll(n)) / 8);
      unsigned long long y = n, r = 1, q = 1;
      unsigned long long x, g, k, ys;
      do{
        x = y;
        y = mr.generate(y);
        for(int i = 0; i < r; i++) y = f(y);
        y = mr.reduce(y);

        k = 0;
        while(k < r && g == 1){
          q = mr.generate(q);
          y = mr.generate(y);
          ys = y;
          for(int i = 0; i < std::min(m, r - k); i++){
            y = f(y);
            unsigned long long z = mr.reduce(y);
            q = mr.mul(q, mr.generate(x > z ? x - z : z - x));
          }
          y = mr.reduce(y);
          g = binary_gcd(mr.reduce(q), n);
          k += m;
        }
        r <<= 1;
      }while(g == 1);
      if(g == n){
        do{
          ys = f(ys);
          unsigned long long z = mr.reduce(ys);
          g = binary_gcd(x > z ? x - z : z - x, n);
        }while(g == 1);
      }
      return g; // g == n when failure
    };
    unsigned long long c = 1, res = n;
    do{
      res = try_factorize(c);
      // c = generate_random_prime(2, n - 1);
      c = (c + 1) % n;
    }while(res == n);
    return res;
  }
  std::vector<unsigned long long> factorize(unsigned long long n){
    if(n <= 1) return {};
    unsigned long long x = rho(n);
    if(x == n) return {x};
    auto l = factorize(x);
    auto r = factorize(n / x);
    l.insert(l.end(), r.begin(), r.end());
    return l;
  }
  // 素因数の集合(重複なし, ソート済)を返す
  std::vector<unsigned long long> prime_factor(unsigned long long n){
    auto p = factorize(n);
    sort(p.begin(), p.end());
    p.erase(std::unique(p.begin(), p.end()), p.end());
    return p;
  }
  // 10^18以下の高度合成数 897612484786617600の約数が103680個なので全列挙して良さそう
  std::vector<unsigned long long> divisor(unsigned long long n){
    auto p = factorize(n);
    sort(p.begin(), p.end());

    std::vector<std::pair<unsigned long long, int>> x;

    for(int i = 0; i < p.size(); i++){
      if(!i || p[i] != p[i - 1]) x.push_back({p[i], 1});
      else x.back().second++;
    }
    int sz = 1;
    for(auto [p_cur, cnt] : x) sz *= cnt + 1;

    std::vector<unsigned long long> res(sz);
    res[0] = 1;
    int r_prev = 1, r = 1;
    for(auto [p_cur, cnt] : x){
      unsigned long long ppow = 1;
      for(int c = 0; c < cnt; c++){
        ppow *= p_cur;
        for(int i = 0; i < r_prev; i++){
          res[r++] = res[i] * ppow;
        }
      }
      r_prev = r;
    }
    return res;
  }
}

//---tips---
//φ(n) := [1, n]の中でnと互いに素な正整数の数
//φ(n) =  n * π{p:prime factor of n}(1 - 1/p)
//aとnが互いに素な場合, a^φ(n) ≡ 1 (mod n)
unsigned long long totient(unsigned long long n){
  unsigned long long res = n;
  auto prims = rho_factorization::prime_factor(n);
  for(auto p : prims) res -= res / p;
  return res;
}
// n以下のtotient_sum
std::vector<unsigned long long> totient_sum_table(unsigned long long n){
  std::vector<unsigned long long> res(n + 1);
  std::iota(res.begin() + 1, res.end(), 0);
  res[1] = 1;
  for(int i = 2; i <= n; i++){
    // prime
    if(res[i] == i - 1){
      for(int j = 2 * i; j <= n; j += i){
        res[j] -= res[j] / i;
      }
    }
  }
  for(int i = 2; i <= n; i++) res[i] += res[i - 1];
  return res;
}
// [1]
// totient_sum(n) = (i, j){1 <= i <= n, 1 <= j <= i}となるペアの数 - そのうちgcd(i, j) != 1であるものの数
//                = n * (n + 1) / 2 - ∑{2 <= g <= n} gcd(i, j) == gのペア
//                = n * (n + 1) / 2 - ∑{2 <= g <= n} totient_sum(n / g)

// この演算をメモ化再帰で行った時の n / g (切り捨て)の種類数について考える

// [2]
// floor(x / ab) = floor(floor(x / a) / b)
// 証明:
// x = qab + r (0 <= r < ab)とすると
// 左辺 = floor(q + r / ab) = q
// 右辺 = floor((qb + r') / b) (0 <= r' < b) = q

// [3]
// [2]よりnを正整数で0回以上除算した時に得られる商はO(√n)種類
__uint128_t totient_sum(unsigned long long n){
  static std::vector<unsigned long long> low;
  if(low.empty()) low = totient_sum_table(std::min(n, (unsigned long long)4000000));
  std::unordered_map<unsigned long long, __uint128_t> mp;

  unsigned long long memo_max = 0;
  auto tsum = [&](auto &&tsum, unsigned long long m)->__uint128_t{
    if(m < low.size()) return low[m];
    if(m <= memo_max) return mp.at(m);
    __uint128_t res = (__uint128_t)m * (m + 1) / 2;
    auto d = divrange(m);
    std::reverse(d.begin(), d.end());
    for(auto [q, a, b] : d){
      if(q == m) continue;
      res -= (b - a + 1) * tsum(tsum, q);
    }
    mp.emplace(m, res);
    memo_max = m;
    return res;
  };

  return tsum(tsum, n);
}
// p: 素数
unsigned long long is_primitive_root(unsigned long long p){
  static std::random_device seed_gen;
  static std::mt19937_64 engine(seed_gen());
  //assert(miller_rabin_mr(p));
  auto primes = rho_factorization::prime_factor(p - 1);
  while(true){
    bool f = true;
    unsigned long long a = engine() % (p - 1) + 1;
    for(unsigned long long pk : primes){
      // a ^ (p - 1) / pk ≡ 1 (mod p) -> no
      if(mod_pow_mr(a, (p - 1) / pk, p) == 1){
        f = false;
        break;
      }
    }
    if(f) return a;
  }
}
// ∑{i, 0 <= i < n} floor((ai + b) / m)
// n, m, a, b <= 10^9
long long floor_sum(long long n, long long m, long long a, long long b){
  long long ans = 0;
  if(a >= m){
    ans += (n - 1) * n * (a / m) / 2;
    a %= m;
  }
  if(b >= m){
    ans += n * (b / m);
    b %= m;
  }
  // 変形:
  // https://rsk0315.hatenablog.com/entry/2020/12/13/231307
  // https://atcoder.jp/contests/practice2/editorial/579
  long long y_max = a * n + b;
  if(y_max >= m) ans += floor_sum(y_max / m, a, m, y_max % m);
  return ans;
}
// min((ax + b) % mod)  x in[l, r) , 0 <= l < r
long long min_linear_mod(long long a, long long b, long long l, long long r, long long mod){
  assert(l <= 0 && l < r);
  a %= mod;
  b = (b + a * l) % mod; // [0, r - l)に変換
  r -= l;
  if(a == 0) return b;
  long long upper = floor_sum(r, mod, a, b);
  long long L = 0, R = b + 1;

  // 定数倍高速化
  long long tmp_val = b, tmp_idx = 0;
  for(int i = 0; i < 10; i++){
    long long sa = mod - tmp_val;
    tmp_idx += (sa + a - 1) / a;
    tmp_val = (tmp_idx * a + b) % mod;
    if(tmp_idx >= r) break;
    R = std::min(R, tmp_val + 1);
  }
  while(R - L > 1){
    long long mid = (L + R) / 2;
    if(upper == floor_sum(r, mod, a, b - mid)) L = mid;
    else R = mid;
  }
  return L;
}


///
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

/////
// m_iで割るとr_i余る情報から(全ての条件を満たすlcm(m_i)以下の数)%modを返す
// mが互いに素でないと壊れる
// O(n^2)
#line 754 ".lib/math/integer.hpp"
long long garner_coprime(std::vector<long long> r, std::vector<long long> m, long long mod){
  int n = r.size();
  assert(n == m.size());

  // ans = r_1 + x_1 * m_1 + x_2 * m_1 * m_2 ...
  // x_i = (r_i - (i - 1項までの和)) / (m_1 * m_2 ... m_i-1)  mod m_i
  // M_i := (m_1 * m_2 ... m_i - 1) mod m_i
  std::vector<long long> accum(n + 1, 0), M(n + 1, 1);
  m.push_back(mod);

  for(int i = 0; i < n; i++){
    auto [g, inv] = inv_gcd(M[i], m[i]);
    assert(g == 1);
    long long x = (((__int128_t)r[i] - accum[i]) * inv) % m[i];
    if(x < 0) x += m[i];
    for(int j = i + 1; j <= n; j++){
      accum[j] = (accum[j] + (__int128_t)M[j] * x) % m[j];
      M[j] = ((__int128_t)M[j] * m[i]) % m[j];
    }
  }
  return accum[n];
}
// m_iで割るとr_i余る情報から(全ての条件を満たすlcm(m_i)以下の数)%modを返す
// 解が無い場合は-1
long long garner(std::vector<long long> &r, std::vector<long long> &m, long long mod){
  int n = r.size();
  assert(n == m.size());
  // mを互いに素にする

  for(int i = 1; i < n; i++){
    for(int j = 0; j < i; j++){
      long long x = m[i], y = m[j], g = gcd(x, y);
      while(g != 1){
        // g2 := gcd(g, x / g) != 1なら g2に含まれる素因数はy / gには含まれない. g3も同じ.
        // g2, g3はgの約数
        long long g2 = gcd(g, x / g);
        if(g2 == 1){
          x /= g;
          break;
        }
        long long g3 = gcd(g, y / g);
        if(g3 == 1){
          y /= g;
          break;
        }
        x /= g3, y /= g2;
        g /= g2 * g3;
      }
      m[i] = x, r[i] %= x;
      m[j] = y, r[j] %= y;
    }
  }
  return garner_coprime(r, m, mod);
}
#line 3 "a.cpp"

int main(){
  io_init();
  int n;
  std::cin >> n;
  vec<ll> r(n), m(n);
  range(i, 0, n) std::cin >> r[i] >> m[i];
  std::cout << garner(r, m, 1000000007) << '\n';
}
0