結果

問題 No.813 ユキちゃんの冒険
ユーザー ecotteaecottea
提出日時 2023-06-07 22:37:22
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 1,071 ms / 2,000 ms
コード長 15,768 bytes
コンパイル時間 4,687 ms
コンパイル使用メモリ 272,028 KB
実行使用メモリ 97,920 KB
最終ジャッジ日時 2024-06-09 14:09:28
合計ジャッジ時間 11,431 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 47 ms
13,824 KB
testcase_03 AC 31 ms
11,776 KB
testcase_04 AC 1,071 ms
97,920 KB
testcase_05 AC 860 ms
86,528 KB
testcase_06 AC 95 ms
21,504 KB
testcase_07 AC 4 ms
6,940 KB
testcase_08 AC 353 ms
49,792 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 55 ms
15,744 KB
testcase_11 AC 23 ms
9,728 KB
testcase_12 AC 408 ms
50,176 KB
testcase_13 AC 113 ms
24,448 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 700 ms
73,088 KB
testcase_16 AC 638 ms
78,592 KB
testcase_17 AC 7 ms
6,944 KB
testcase_18 AC 2 ms
6,940 KB
testcase_19 AC 1,022 ms
95,232 KB
testcase_20 AC 34 ms
12,160 KB
testcase_21 AC 5 ms
6,940 KB
testcase_22 AC 5 ms
6,940 KB
testcase_23 AC 146 ms
27,520 KB
testcase_24 AC 2 ms
6,944 KB
testcase_25 AC 1,066 ms
97,920 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

using mint = modint1000000007;
//using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


void WA() {
	int n; double p, q;
	cin >> n >> p >> q;

	double res = 0;

	for (int k = 1; k <= 23; k += 2) {
		repb(set, k) {
			int x = 0, d = 1;
			rep(i, k) {
				if (get(set, i)) {
					d *= -1;
				}
				else {
					x += d;
				}

				if (x == n || (i != k - 1 && x == 0)) {
					x = n;
					break;
				}
			}

			double prob = 1;
			rep(i, k) prob *= get(set, i) ? p : q;

			if (k < 23) {
				res += prob * (x == 0);
			}
			else {
				res += prob * (n - x) / n;
			}
		}
	}

	cout << res << endl;
}


//【行列】
/*
* Matrix<T>(int n, int m) : O(n m)
*	n×m 零行列で初期化する.
*
* Matrix<T>(int n) : O(n^2)
*	n×n 単位行列で初期化する.
*
* Matrix<T>(vvT a) : O(n m)
*	二次元配列 a[0..n)[0..m) で初期化する.
*
* bool empty() : O(1)
*	行列が空かを返す.
*
* A + B : O(n m)
*	n×m 行列 A, B の和を返す.+= も使用可.
*
* A - B : O(n m)
*	n×m 行列 A, B の差を返す.-= も使用可.
*
* c * A / A * c : O(n m)
*	n×m 行列 A とスカラー c のスカラー積を返す.*= も使用可.
*
* A * x : O(n m)
*	n×m 行列 A と n 次元列ベクトル x の積を返す.
*
* x * A : O(n m)
*	m 次元行ベクトル x と n×m 行列 A の積を返す.
*
* A * B : O(n m l)
*	n×m 行列 A と m×l 行列 B の積を返す.
*
* Mat pow(ll d) : O(n^3 log d)
*	自身を d 乗した行列を返す.
*/
template <class T>
struct Matrix {
	int n, m; // 行列のサイズ(n 行 m 列)
	vector<vector<T>> v; // 行列の成分

	// n×m 零行列で初期化する.
	Matrix(int n, int m) : n(n), m(m), v(n, vector<T>(m)) {}

	// n×n 単位行列で初期化する.
	Matrix(int n) : n(n), m(n), v(n, vector<T>(n)) { rep(i, n) v[i][i] = T(1); }

	// 二次元配列 a[0..n)[0..m) で初期化する.
	Matrix(const vector<vector<T>>& a) : n(sz(a)), m(sz(a[0])), v(a) {}
	Matrix() : n(0), m(0) {}

	// 代入
	Matrix(const Matrix&) = default;
	Matrix& operator=(const Matrix&) = default;

	// アクセス
	inline vector<T> const& operator[](int i) const { return v[i]; }
	inline vector<T>& operator[](int i) {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		// inline を付けて [] でアクセスするとなぜか v[] への直接アクセスより速くなった.
		return v[i];
	}

	// 入力
	friend istream& operator>>(istream& is, Matrix& a) {
		rep(i, a.n) rep(j, a.m) is >> a.v[i][j];
		return is;
	}

	// 空か
	bool empty() { return min(n, m) == 0; }

	// 比較
	bool operator==(const Matrix& b) const { return n == b.n && m == b.m && v == b.v; }
	bool operator!=(const Matrix& b) const { return !(*this == b); }

	// 加算,減算,スカラー倍
	Matrix& operator+=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] += b[i][j];
		return *this;
	}
	Matrix& operator-=(const Matrix& b) {
		rep(i, n) rep(j, m) v[i][j] -= b[i][j];
		return *this;
	}
	Matrix& operator*=(const T& c) {
		rep(i, n) rep(j, m) v[i][j] *= c;
		return *this;
	}
	Matrix operator+(const Matrix& b) const { return Matrix(*this) += b; }
	Matrix operator-(const Matrix& b) const { return Matrix(*this) -= b; }
	Matrix operator*(const T& c) const { return Matrix(*this) *= c; }
	friend Matrix operator*(const T& c, const Matrix<T>& a) { return a * c; }
	Matrix operator-() const { return Matrix(*this) *= T(-1); }

	// 行列ベクトル積 : O(m n)
	vector<T> operator*(const vector<T>& x) const {
		vector<T> y(n);
		rep(i, n) rep(j, m)	y[i] += v[i][j] * x[j];
		return y;
	}

	// ベクトル行列積 : O(m n)
	friend vector<T> operator*(const vector<T>& x, const Matrix& a) {
		vector<T> y(a.m);
		rep(i, a.n) rep(j, a.m) y[j] += x[i] * a[i][j];
		return y;
	}

	// 積:O(n^3)
	Matrix operator*(const Matrix& b) const {
		// verify : https://judge.yosupo.jp/problem/matrix_product

		Matrix res(n, b.m);
		rep(i, res.n) rep(j, res.m) rep(k, m) res[i][j] += v[i][k] * b[k][j];
		return res;
	}
	Matrix& operator*=(const Matrix& b) { *this = *this * b; return *this; }

	// 累乗:O(n^3 log d)
	Matrix pow(ll d) const {
		Matrix res(n), pow2 = *this;
		while (d > 0) {
			if (d & 1) res *= pow2;
			pow2 *= pow2;
			d /= 2;
		}
		return res;
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Matrix& a) {
		rep(i, a.n) {
			os << "[";
			rep(j, a.m) os << a[i][j] << " ]"[j == a.m - 1];
			if (i < a.n - 1) os << "\n";
		}
		return os;
	}
#endif
};


//【線形方程式】O(n m min(n, m))
/*
* 与えられた n×m 行列 A と n 次元ベクトル b に対し,
* 線形方程式 A x = b の特殊解 x0(m 次元ベクトル)を返す(なければ空リスト)
* また同次形 A x = 0 の解空間の基底(m 次元ベクトル)のリストを xs に格納する.
*/
template <class T>
vector<T> gauss_jordan_elimination(const Matrix<T>& A, const vector<T>& b, vector<vector<T>>* xs = nullptr) {
	// verify : https://judge.yosupo.jp/problem/system_of_linear_equations

	int n = A.n, m = A.m;

	// v : 拡大係数行列 (A | b)
	vector<vector<T>> v(n, vector<T>(m + 1));
	rep(i, n) rep(j, m) v[i][j] = A[i][j];
	rep(i, n) v[i][m] = b[i];

	// pivots[i] : 第 i 行のピボットが第何列にあるか
	vi pivots;

	// 直前に見つけたピボットの位置
	int pi = -1, pj = -1;

	// 注目位置を v[i][j] とする.
	int i = 0, j = 0;

	while (i < n && j <= m) {
		// 同じ列の下方の行から非 0 成分を見つける.
		int i2 = i;
		while (i2 < n && v[i2][j] == 0) i2++;

		// 見つからなかったら注目位置を右に移す.
		if (i2 == n) {
			j++;
			continue;
		}

		// 見つかったら第 i 行とその行を入れ替える.
		pi = i; pj = j;
		if (i != i2) swap(v[i], v[i2]);

		// v[i][j] をピボットに選択する.
		pivots.push_back(j);

		// v[i][j] が 1 になるよう第 i 行全体を v[i][j] で割る.
		T vij_inv = T(1) / v[i][j];
		repi(j2, j, m) v[i][j2] *= vij_inv;

		// 第 i 行以外の第 j 列の成分が全て 0 になるよう第 i 行を定数倍して減じる.
		rep(i2, n) {
			if (v[i2][j] == T(0) || i2 == i) continue;

			T mul = v[i2][j];
			repi(j2, j, m) v[i2][j2] -= v[i][j2] * mul;
		}

		// 注目位置を右下に移す.
		i++; j++;
	}

	// 最後に見つかったピボットの位置が第 m 列ならば解なし.
	if (pivots.back() == m) return vector<T>();

	// A x = b の特殊解 x0 の構成(任意定数は全て 0 にする)
	vector<T> x0(m);
	int rnk = sz(pivots);
	rep(i, rnk) x0[pivots[i]] = v[i][m];

	// 同次形 A x = 0 の一般解 {x} の基底の構成(任意定数を 1-hot にする)
	if (xs != nullptr) {
		xs->clear();

		int i = 0;
		rep(j, m) {
			if (i < rnk && j == pivots[i]) {
				i++;
				continue;
			}

			vector<T> x(m, T(0));
			x[j] = 1;
			rep(i2, i) x[pivots[i2]] = -v[i2][j];
			xs->emplace_back(move(x));
		}
	}

	return x0;
}


//【ランダムウォーク】
/*
* Random_walk<T>(int n) : O(1)
*	n 頂点 0 辺のグラフで初期化する.
*
* add_edge(int s, int t, T prob) : O(1)
*	有向辺 s→t を,選択確率 prob で追加する.
*	制約:任意の s について Σs→t p[s][t] = 1
*
* vT arrive_probability_to(int GL) : O(n^3)(バグってる)
*	各頂点から出発し GL に到着する確率のリストを返す.
* 
* vT expected_turn_to(int GL) : O(n^3)
*	各頂点から出発し GL に初めて到着するまでのターン数の期待値のリストを返す.
*	制約:どの頂点からも GL に到達可能
*
* vT stationary_distribution() : O(n^3)
*	定常分布を返す.
*	制約:どの頂点からどの頂点へも移動可能
*
* 利用:【行列】,【線形方程式】
*/
template <class T>
class Random_walk {
	int n;

	// 推移確率行列(p[i][j] : i から j に移動する確率)
	vector<vector<T>> p;

public:
	// n 頂点 0 辺のグラフで初期化する.
	Random_walk(int n) : n(n), p(n, vector<T>(n)) {
		
	}
	Random_walk() : n(0) {}

	// 有向辺 s→t を,選択確率 prob で追加する.
	void add_edge(int s, int t, T prob) {
		p[s][t] += prob;
	}

	// 各頂点から出発し GL に到着する確率のリストを返す.
	vector<T> arrive_probability_to(int GL) {
		//【方法】
		// s から GL に到着する確率を x[s] とすると,線形方程式
		//		x[s] = Σs→t p[s][t] x[t] (s ≠ GL)
		//		x[GL] = 1
		// を得る.これを整理すると
		//		(1 - p[s][s])x[s] - Σs→t,t≠s p[s][t] x[t] = 0
		//		x[GL] = 1
		// となる.

		Matrix<T> mat(n); vector<T> vec(n);
		rep(i, n) rep(j, n) if (i != GL) mat[i][j] -= p[i][j];
		vec[GL] = 1;

		return gauss_jordan_elimination(mat, vec);
	}

	// 各頂点から出発し GL に初めて到着するまでのターン数の期待値のリストを返す.
	vector<T> expected_turn_to(int GL) {
		//【方法】
		// s→GL にかかるターン数の期待値を e[s] とすると,線形方程式
		//		e[s] = 1 + Σs→t p[s][t] e[t] (s ≠ GL)
		//		e[GL] = 0
		// を得る.これを整理すると
		//		(1 - p[s][s])e[s] - Σs→t,t≠s p[s][t] e[t] = 1
		//		e[GL] = 0
		// となる.

		Matrix<T> mat(n); vector<T> vec(n, 1);
		rep(i, n) rep(j, n) if (i != GL) mat[i][j] -= p[i][j];
		vec[GL] = 0;

		return gauss_jordan_elimination(mat, vec);
	}

	// 定常分布を返す.
	vector<T> stationary_distribution() {
		//【方法】
		// 定常分布を π[0..n) とすると,線形方程式
		//		π[t] = Σs→t p[s][t] π[s]
		//		Σπ[0..n) = 1
		// を得る.これを整理すると
		//		(1 - p[t][t])π[t] - Σs→t,t≠s p[s][t] π[s] = 0
		//		Σπ[0..n) = 1
		// となる.

		Matrix<T> mat(n); vector<T> vec(n);
		rep(i, n - 1) rep(j, n) mat[i][j] -= p[j][i];
		rep(j, n) mat[n - 1][j] = 1;
		vec[n - 1] = 1;

		return gauss_jordan_elimination(mat, vec);
	}

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const Random_walk& rw) {
		rep(i, rw.n) {
			rep(j, rw.n) os << rw.p[i][j] << " ";
			os << endl;
		}
		return os;
	}
#endif
}; 


void check_Random_walk() {
	Random_walk<double> RW(4);
	RW.add_edge(0, 1, 0.5);
	RW.add_edge(0, 0, 0.5);
	RW.add_edge(1, 2, 1);
	RW.add_edge(2, 3, 1);
	RW.add_edge(3, 0, 1);

	dump(RW.expected_turn_to(3)); // 4 2 1 0
	dump(RW.arrive_probability_to(3)); // 1 1 1 1
	dump(RW.stationary_distribution()); // 0.4 0.2 0.2 0.2

	exit(0);
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

//	check_Random_walk();

	int n; double p, q;
	cin >> n >> p >> q;

	int DEATH = 2 * (n + 1);
	Random_walk<double> g(DEATH + 1);

	repi(i, 0, n - 1) {
		g.add_edge(2 * i + 0, 2 * i + 1, p);
		g.add_edge(2 * i + 0, 2 * (i + 1) + 0, q);
		g.add_edge(2 * i + 0, DEATH, 1 - p - q);
	}
	g.add_edge(2 * n + 0, DEATH, 1);
	repi(i, 1, n) {
		g.add_edge(2 * i + 1, 2 * i + 0, p);
		g.add_edge(2 * i + 1, 2 * (i - 1) + 1, q);
		g.add_edge(2 * i + 1, DEATH, 1 - p - q);
	}
	g.add_edge(2 * 0 + 1, DEATH, 1);
	g.add_edge(DEATH, DEATH, 1);
//	dump(g);

	auto res = g.arrive_probability_to(2 * 0 + 1);
	dump(res);

	cout << res[2 * 0 + 0] << endl;
}
0