結果

問題 No.108 トリプルカードコンプ
ユーザー T101010101T101010101
提出日時 2023-06-12 16:44:02
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 39 ms / 5,000 ms
コード長 9,580 bytes
コンパイル時間 5,595 ms
コンパイル使用メモリ 291,552 KB
実行使用メモリ 91,368 KB
最終ジャッジ日時 2024-06-11 17:43:27
合計ジャッジ時間 7,066 ms
ジャッジサーバーID
(参考情報)
judge4 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
6,816 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 4 ms
14,248 KB
testcase_03 AC 1 ms
6,940 KB
testcase_04 AC 1 ms
6,940 KB
testcase_05 AC 2 ms
6,940 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 39 ms
91,228 KB
testcase_08 AC 31 ms
91,324 KB
testcase_09 AC 29 ms
91,144 KB
testcase_10 AC 30 ms
91,368 KB
testcase_11 AC 29 ms
91,068 KB
testcase_12 AC 4 ms
18,376 KB
testcase_13 AC 14 ms
64,324 KB
testcase_14 AC 14 ms
62,348 KB
testcase_15 AC 15 ms
62,524 KB
testcase_16 AC 15 ms
63,004 KB
testcase_17 AC 14 ms
61,736 KB
testcase_18 AC 34 ms
86,848 KB
testcase_19 AC 30 ms
86,816 KB
testcase_20 AC 31 ms
90,544 KB
testcase_21 AC 33 ms
90,512 KB
testcase_22 AC 29 ms
87,588 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#pragma region Macros

#pragma GCC target("avx,avx2,fma")
#pragma GCC optimize("O3,unroll-loops")

#include <bits/extc++.h>
// #include <atcoder/all>
// using namespace atcoder;
using namespace std;
using namespace __gnu_pbds;

// #include <boost/multiprecision/cpp_dec_float.hpp>
// #include <boost/multiprecision/cpp_int.hpp>
// namespace mp = boost::multiprecision;
// using Bint = mp::cpp_int;
// using Bdouble = mp::number<mp::cpp_dec_float<128>>;

#define TO_STRING(var) # var
#define pb emplace_back
#define int ll
#define endl '\n'
#define sqrt __builtin_sqrt

using ll = long long;
using ld = long double;
const ld PI = acos(-1);
const ld EPS = 1e-10;
const int INF = 1 << 30;
const ll INFL = 1LL << 61;
// const int MOD = 998244353;
const int MOD = 1000000007;

const vector<int> dx = {0, 1, -1, 0, 1, 1, -1, -1}; // → ↓ ← ↑ ↘ ↙ ↖ ↗
const vector<int> dy = {1, 0, 0, -1, 1, -1, -1, 1};

struct Edge {
    int from, to;
    int cost;
    Edge(int to, int cost) : from(-1), to(to), cost(cost) {}
    Edge(int from, int to, int cost) : from(from), to(to), cost(cost) {}
    Edge &operator=(const int &x) {
        to = x;
        return *this;
    }

    operator int() const { return to; }
};

__attribute__((constructor))
void constructor() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout << fixed << setprecision(12);
}

int POW(int x, int n) {
    __int128_t ret = 1;
    if (n < 0) { cout << "error" << endl; return 0; }
    else if (x == 1 or n == 0) ret = 1;
    else if (x == -1 && n % 2 == 0) ret = 1; 
    else if (x == -1) ret = -1; 
    else if (n % 2 == 0) ret = POW(x * x, n / 2);
    else ret = x * POW(x, n - 1);

    if (ret > 8e18) ret = 0;
    return ret;
}
int floor(int x, int y) { return (x > 0 ? x / y : (x - y + 1) / y); }
int ceil(int x, int y) { return (x > 0 ? (x + y - 1) / y : x / y); }
ll per(int x, int y) {
    if (y == 0) {
        cout << "error" << endl;
        return INFL;
    }
    if (x >= 0 && y > 0) return x / y;
    if (x >= 0 && y < 0) return x / y - (x % y < 0);
    if (x < 0 && y < 0) return x / y + (x % y < 0);
    // if (x < 0 && y > 0) 
    return x / y - (x % y < 0);
}
ll mod(int x, int y) {
    if (y == 0) {
        cout << "error" << endl;
        return INFL;
    }
    if (x >= 0 && y > 0) return x % y;
    if (x >= 0 && y < 0) return x % y;
    if (x < 0 && y < 0) {
        __int128_t ret = x % y;
        ret += (__int128_t)abs(y) * INFL;
        ret %= abs(y);
        return ret;
    }
    // if (x < 0 && y > 0) {
        __int128_t ret = x % y;
        ret += (__int128_t)abs(y) * INFL;
        ret %= abs(y);
        return ret;
    // }
}

template <class T> bool chmax(T &a, const T& b) {
    if (a < b) { a = b; return true; }
    return false;
}
template <class T> bool chmin(T &a, const T& b) {
    if (a > b) { a = b; return true; }
    return false;
}

int countl_zero(int N) { return __builtin_clzll(N); }
int countl_one(int N) {
    int ret = 0; while (N % 2) { N /= 2; ret++; }
    return ret;
}
int countr_zero(int N) { return __builtin_ctzll(N); }
int countr_one(int N) {
    int ret = 0, k = 63 - __builtin_clzll(N);
    while (k != -1 && (N & (1LL << k))) { k--; ret++; }
    return ret;
}
int popcount(int N) { return __builtin_popcountll(N); }
int unpopcount(int N) { return 64 - __builtin_clzll(N) - __builtin_popcountll(N); }

int top_bit(int N) { return 63 - __builtin_clzll(N);} // 2^kの位
int bot_bit(int N) { return __builtin_ctz(N);} // 2^kの位
int MSB(int N) { return 1 << (63 - __builtin_clzll(N)); } // mask

int bit_width(int N) { return 64 - __builtin_clzll(N); } // 桁数
int ceil_log2(int N) { return 63 - __builtin_clzll(N); }
int bit_floor(int N) { return 1 << (63 - __builtin_clzll(N)); }
int floor_log2(int N) { return 64 - __builtin_clzll(N-1); }
int bit_ceil(int N) { return 1 << (64 - __builtin_clzll(N-1)) - (N==1); }

class UnionFind {
public:

	UnionFind() = default;

    UnionFind(int N) : par(N), sz(N, 1) {
        iota(par.begin(), par.end(), 0);
    }

	int root(int x) {
		if (par[x] == x) return x;
		return (par[x] = root(par[x]));
	}

	bool unite(int x, int y) {
		int rx = root(x);
		int ry = root(y);

        if (rx == ry) return false;
		if (sz[rx] < sz[ry]) swap(rx, ry);

		sz[rx] += sz[ry];
		par[ry] = rx;

        return true;
	}

	bool issame(int x, int y) { return (root(x) == root(y)); }
	int size(int x) { return sz[root(x)]; }

    vector<vector<int>> groups(int N) {
        vector<vector<int>> G(N);
        for (int x = 0; x < N; x++) {
            G[root(x)].push_back(x);
        }
		G.erase(
            remove_if(G.begin(), G.end(),
                [&](const vector<int>& V) { return V.empty(); }),
                    G.end());
        return G;
    }

private:
	vector<int> par;
	vector<int> sz;
};

template<int mod> class Modint{
public:
    int val = 0;
    Modint(int x = 0) { while (x < 0) x += mod; val = x % mod; }
    Modint(const Modint &r) { val = r.val; }

    Modint operator -() { return Modint(-val); } // 単項
    Modint operator +(const Modint &r) { return Modint(*this) += r; }
    Modint operator +(const int &q) { Modint r(q); return Modint(*this) += r; }
    Modint operator -(const Modint &r) { return Modint(*this) -= r; }
    Modint operator -(const int &q) { Modint r(q); return Modint(*this) -= r; }
    Modint operator *(const Modint &r) { return Modint(*this) *= r; }
    Modint operator *(const int &q) { Modint r(q); return Modint(*this) *= r; }
    Modint operator /(const Modint &r) { return Modint(*this) /= r; }
    Modint operator /(const int &q) { Modint r(q); return Modint(*this) /= r; }
    
    Modint& operator ++() { val++; if (val >= mod) val -= mod; return *this; } // 前置
    Modint operator ++(signed) { ++*this; return *this; } // 後置
    Modint& operator --() { val--; if (val < 0) val += mod; return *this; }
    Modint operator --(signed) { --*this; return *this; }
    Modint &operator +=(const Modint &r) { val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator +=(const int &q) { Modint r(q); val += r.val; if (val >= mod) val -= mod; return *this; }
    Modint &operator -=(const Modint &r) { if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator -=(const int &q) { Modint r(q);  if (val < r.val) val += mod; val -= r.val; return *this; }
    Modint &operator *=(const Modint &r) { val = val * r.val % mod; return *this; }
    Modint &operator *=(const int &q) { Modint r(q); val = val * r.val % mod; return *this; }
    Modint &operator /=(const Modint &r) {
        int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }
    Modint &operator /=(const int &q) {
        Modint r(q); int a = r.val, b = mod, u = 1, v = 0;
        while (b) {int t = a / b; a -= t * b; swap(a, b); u -= t * v; swap(u, v);}
        val = val * u % mod; if (val < 0) val += mod;
        return *this;
    }

    bool operator ==(const Modint& r) { return this -> val == r.val; }
    bool operator <(const Modint& r) { return this -> val < r.val; }
    bool operator !=(const Modint& r) { return this -> val != r.val; }
};

using mint = Modint<MOD>;
// using mint = modint<MOD>;

istream &operator >>(istream &is, mint& x) {
    int t; is >> t;
    x = t;
    return (is);
}
ostream &operator <<(ostream &os, const mint& x) {
    return os << x.val;
}
mint modpow(const mint &x, int n) {
    if (n == 0) return 1;
    mint t = modpow(x, n / 2);
    t = t * t;
    if (n & 1) t = t * x;
    return t;
}

int modpow(__int128_t x, int n, int mod) {
    __int128_t ret = 1;
    while (n > 0) {
        if (n % 2 == 1) ret = ret * x % mod;
        x = x * x % mod;
        n /= 2;
    }
    return ret;
}

vector<mint> fac, finv, Inv;
void COMinit(int N) {
    fac.resize(N + 1);
    finv.resize(N + 1);
    Inv.resize(N + 1);
    fac[0] = fac[1] = 1;
    finv[0] = finv[1] = 1;
    Inv[1] = 1;
    for (int i = 2; i <= N; i++) {
        fac[i] = fac[i-1] * mint(i);
        Inv[i] = -Inv[MOD % i] * mint(MOD / i);
        finv[i] = finv[i - 1] * Inv[i];
    }
}

mint COM(int N, int K) {
    if (N < K) return 0;
    if (N < 0 || K < 0) return 0;
    return fac[N] * finv[K] * finv[N - K];
}

#pragma endregion

int N;
// dp[i][j][k] := 1個の皿がi枚、2個の皿がj枚、3個の皿がk枚の状態から
//                始めた時の試行回数の期待値
ld dp[301][301][301];
ld rec(int i, int j, int k) {
    if (dp[i][j][k] != -1) return dp[i][j][k];

    dp[i][j][k] = 1;
    if (i - 1 >= 0) {
        dp[i][j][k] += rec(i - 1, j, k) * i / (ld)N; // 状態遷移先から貰ってくる
    }
    if (i + 1 <= N && j - 1 >= 0) {
        dp[i][j][k] += rec(i + 1, j - 1, k) * j / (ld)N;
    }
    if (j + 1 <= N && k - 1 >= 0) {
        dp[i][j][k] += rec(i, j + 1, k - 1) * k / (ld)N;
    }
    dp[i][j][k] /= (1. - (ld)(N - i - j - k) / N); // 移項 -> 係数の逆数
    return dp[i][j][k];
}

signed main() {
    cin >> N;
    int a = 0, b = 0, c = 0; // 残り必要枚数が 1枚のカード / 2枚のカード / 3枚のカード
    vector<int> A(N);
    for (int i = 0; i < N; i++) {
        cin >> A[i];
        if (A[i] == 2) a++;
        if (A[i] == 1) b++;
        if (A[i] == 0) c++;
    }

    for (int i = 0; i <= N; i++) {
        for (int j = 0; j <= N; j++) {
            for (int k = 0; k <= N; k++) {
                dp[i][j][k] = -1;
            }
        }
    }
    dp[0][0][0] = 0;

    cout << rec(a, b, c) << endl;
}
0