結果

問題 No.2048 L(I+D)S
ユーザー ecotteaecottea
提出日時 2023-06-14 17:17:58
言語 C++17(gcc12)
(gcc 12.3.0 + boost 1.87.0)
結果
AC  
実行時間 20 ms / 2,000 ms
コード長 9,690 bytes
コンパイル時間 4,617 ms
コンパイル使用メモリ 268,296 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-06-23 01:09:07
合計ジャッジ時間 5,381 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 2 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 1 ms
5,376 KB
testcase_07 AC 2 ms
5,376 KB
testcase_08 AC 16 ms
5,376 KB
testcase_09 AC 8 ms
5,376 KB
testcase_10 AC 6 ms
5,376 KB
testcase_11 AC 18 ms
5,376 KB
testcase_12 AC 10 ms
5,376 KB
testcase_13 AC 7 ms
5,376 KB
testcase_14 AC 8 ms
5,376 KB
testcase_15 AC 4 ms
5,376 KB
testcase_16 AC 19 ms
5,376 KB
testcase_17 AC 20 ms
5,376 KB
testcase_18 AC 19 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004004004004004LL;
double EPS = 1e-12;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

// 手元環境(Visual Studio)
#ifdef _MSC_VER
#include "local.hpp"
// 提出用(gcc)
#else
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif

#endif // 折りたたみ用


//--------------AtCoder 専用--------------
#include <atcoder/all>
using namespace atcoder;

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
//----------------------------------------


//【最長増加部分列】O(n log n)
/*
* 数列 a[0..n) の(狭義)最長増加部分列の長さを返す.
*
*(二分探索で高速化したインライン DP)
*/
template <class T>
int longest_increasing_subsequence(const vector<T>& a) {
	// verify : https://onlinejudge.u-aizu.ac.jp/problems/DPL_1_D

	int n = sz(a);

	// dp_i[j] : a[0..i) までで,長さが j である増加部分列の右端の値の最小値
	//	短い増加部分列はそれより長い増加部分列の部分列なので,広義単調増加性がある.
	vector<T> dp(n + 1, numeric_limits<T>::max());
	dp[0] = numeric_limits<T>::lowest();

	// a[0..5) = [4, 2, 3, 3, 1] のときの遷移例
	//	dp_0[0..5] = [-INF, INF, INF, INF, INF, INF]
	//	dp_1[0..5] = [-INF,   4, INF, INF, INF, INF]
	//	dp_2[0..5] = [-INF,   2, INF, INF, INF, INF]
	//	dp_3[0..5] = [-INF,   2,   3, INF, INF, INF]
	//	dp_4[0..5] = [-INF,   2,   3, INF, INF, INF]
	//	dp_5[0..5] = [-INF,   1,   3, INF, INF, INF]

	rep(i, n) {
		// 右端が a[i] 以上であるような増加部分列の最小長さ j を得る.
		int j = lbpos(dp, a[i]);

		// 長さ j の増加部分列の右端を a[i] に置き換える.
		dp[j] = a[i];

		// これより短いものは右端を a[i] に置き換えても得しないので無視できる.
		// これより長いものはそもそも右端を a[i] に置き換えることができない.
	}

	// 右端の値が設定できている長さの最大値を求める.
	int res = 0;
	repir(j, n, 1) {
		if (dp[j] != numeric_limits<T>::max()) {
			res = j;
			break;
		}
	}

	return res;
}


mint naive(int n) {
	vi p(n);
	iota(all(p), 1);

	mint res = 0;

	repp(p) {
		int lis = longest_increasing_subsequence(p);

		vi q(p);
		rep(i, n) q[i] *= -1;

		int lds = longest_increasing_subsequence(q);

		if (lis + lds == n) { // ここを n+1 にしたら中央二項係数になる.
			dump(p);
			res++;
		}
	}

	return res;
}


//【階乗など(法が大きな素数)】
/*
* Factorial_mint(int n_max) : O(n_max)
*	n_max まで計算可能として初期化する.
*
* mint fact(int n) : O(1)
*	n! を返す.
*
* mint fact_inv(int n) : O(1)
*	1/n! を返す(n が負なら 0 を返す)
*
* mint inv(int n) : O(1)
*	1/n を返す.
*
* mint perm(int n, int r) : O(1)
*	順列の数 nPr を返す.
*
* mint bin(int n, int r) : O(1)
*	二項係数 nCr を返す.
*
* mint mul(vi rs) : O(|rs|)
*	多項係数 nC[rs] を返す.(n = Σrs)
*/
class Factorial_mint {
	int n_max;

	// 階乗と階乗の逆数の値を保持するテーブル
	vm fac, fac_inv;

public:
	// n! までの階乗とその逆数を前計算しておく.O(n)
	Factorial_mint(int n) : n_max(n), fac(n + 1), fac_inv(n + 1) {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		fac[0] = 1;
		repi(i, 1, n) fac[i] = fac[i - 1] * i;

		fac_inv[n] = fac[n].inv();
		repir(i, n - 1, 0) fac_inv[i] = fac_inv[i + 1] * (i + 1);
	}
	Factorial_mint() : n_max(0) {} // ダミー

	// n! を返す.
	mint fact(int n) const {
		// verify : https://atcoder.jp/contests/dwacon6th-prelims/tasks/dwacon6th_prelims_b

		Assert(0 <= n && n <= n_max);
		return fac[n];
	}

	// 1/n! を返す(n が負なら 0 を返す)
	mint fact_inv(int n) const {
		// verify : https://atcoder.jp/contests/abc289/tasks/abc289_h

		Assert(n <= n_max);
		if (n < 0) return 0;
		return fac_inv[n];
	}

	// 1/n を返す.
	mint inv(int n) const {
		// verify : https://atcoder.jp/contests/exawizards2019/tasks/exawizards2019_d

		Assert(0 < n && n <= n_max);
		return fac[n - 1] * fac_inv[n];
	}

	// 順列の数 nPr を返す.
	mint perm(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc172/tasks/abc172_e

		Assert(n <= n_max);

		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[n - r];
	}

	// 二項係数 nCr を返す.
	mint bin(int n, int r) const {
		// verify : https://atcoder.jp/contests/abc034/tasks/abc034_c

		Assert(n <= n_max);
		if (r < 0 || n - r < 0) return 0;
		return fac[n] * fac_inv[r] * fac_inv[n - r];
	}

	// 多項係数 nC[rs] を返す.
	mint mul(const vi& rs) const {
		// verify : https://yukicoder.me/problems/no/2141

		if (*min_element(all(rs)) < 0) return 0;
		int n = accumulate(all(rs), 0);
		Assert(n <= n_max);

		mint res = fac[n];
		repe(r, rs) res *= fac_inv[r];

		return res;
	}
};


// 解説 AC
mint solve(int n) {
	Factorial_mint fm(n);

	mint res = 0;

	// h : ヤング図形の縦の長さ
	repi(h, 2, n) {
		int w = n - h;
		if (w < 2) break;

		// フック長公式で標準タブローの数を数えあげる.
		auto num = fm.fact(n);
		auto dnm = fm.fact(h - 2) * fm.fact(w - 2) * h * w * (n - 1);
		dump(h, w, num / dnm);

		// 組なので二乗する.
		res += (num / dnm).pow(2);
	}

	// ロビンソン・シェンステッド対応により,これが求める順列の個数に等しい.
	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");
	
//	zikken();

	int n;
	cin >> n;

//	dump(naive(n));

	cout << solve(n) << endl;
}
0