結果

問題 No.2351 Butterfly in Summer
ユーザー kusirakusirakusirakusira
提出日時 2023-06-16 21:48:08
言語 PyPy3
(7.3.15)
結果
AC  
実行時間 204 ms / 2,000 ms
コード長 18,338 bytes
コンパイル時間 208 ms
コンパイル使用メモリ 82,508 KB
実行使用メモリ 92,468 KB
最終ジャッジ日時 2024-06-24 13:43:00
合計ジャッジ時間 5,544 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 148 ms
91,428 KB
testcase_01 AC 151 ms
91,588 KB
testcase_02 AC 146 ms
91,652 KB
testcase_03 AC 196 ms
92,304 KB
testcase_04 AC 151 ms
91,796 KB
testcase_05 AC 146 ms
91,752 KB
testcase_06 AC 201 ms
92,432 KB
testcase_07 AC 195 ms
92,156 KB
testcase_08 AC 204 ms
92,336 KB
testcase_09 AC 201 ms
92,196 KB
testcase_10 AC 181 ms
92,332 KB
testcase_11 AC 151 ms
91,728 KB
testcase_12 AC 152 ms
91,772 KB
testcase_13 AC 197 ms
92,468 KB
testcase_14 AC 192 ms
91,836 KB
testcase_15 AC 199 ms
92,112 KB
testcase_16 AC 154 ms
91,468 KB
testcase_17 AC 156 ms
91,652 KB
testcase_18 AC 168 ms
92,136 KB
testcase_19 AC 159 ms
91,816 KB
testcase_20 AC 181 ms
92,124 KB
testcase_21 AC 173 ms
91,812 KB
testcase_22 AC 149 ms
91,524 KB
testcase_23 AC 167 ms
92,240 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#Python3/Pypy3テンプレート集

#ライブラリ-------------------------------------------------------------------
from bisect import *
import heapq
import collections
from collections import deque
from queue import Queue
from itertools import groupby
import itertools
import math
import array
import string
import copy
from decimal import Decimal, ROUND_HALF_UP, ROUND_HALF_EVEN

#スぺニット------------------------------------------------------------------
INF = 10**18+5000 
mod = 998244353
MOD = 10**9+7
def YesNo(b): print("Yes") if b else print("No")
def YESNO(b): print("YES") if b else print("NO")

#標準入力---------------------------------------------------------------------
import sys
sys.setrecursionlimit(10 ** 5 + 10000)
input = sys.stdin.readline    ####
def int1(x): return int(x) - 1
def II(): return int(input())
def MI(): return map(int, input().split())
def MI1(): return map(int1, input().split())
def LI(): return list(map(int, input().split()))
def LI1(): return list(map(int1, input().split()))
def LIS(): return list(map(int, SI()))
def LA(f): return list(map(f, input().split()))
def LLI(rows_number): return [LI() for _ in range(rows_number)]
def SI(): return input().strip('\n')
def MS(): return input().split()
def LS(): return list(input().strip('\n'))
def LLS(rows_number): return [LS() for _ in range(rows_number)]
def LMS(rows_number): return [MS() for _ in range(rows_number)]

#関数------------------------------------------------------------------------
###標準ライブラリ###
def ceil(a,b): #切り捨て
    return (a+b-1)//b

def mul(a,b,p): #mod pでのa/bの割り算(bとpは互いに素)
    return (a*pow(b,p-2,p))%p

def transpose(A): #二次元配列の転置
    A_t = []
    for i in range(len(A[0])) :
        tmp = []
        for v in A :
            tmp.append(v[i])
        A_t.append(tmp)
    return A_t

def removeDuplicates_2D(A): #二次元配列の重複削除
    return list(map(list, set(map(tuple, A))))

def cumulativeSum_1D(A): #配列Aの累積和
  return list(itertools.accumulate(A))

def cumulativeSum_2D(S): #二次元配列Sの累積和 => 二次元リスト
    h = len(S)
    w = len(S[0])
    CS = [[0 for _ in range(w)]for _ in range(h)]
    CCS = [[0 for _ in range(w)]for _ in range(h)]
    for i in range(h):
        for j in range(w):
            if(j==0):
                CS[i][0] = S[i][0]
            else:
                CS[i][j] = CS[i][j-1] + S[i][j]
    for i in range(h):
        for j in range(w):
            if(i==0):
                CCS[0][j] = CS[0][j]
            else:
                CCS[i][j] = CCS[i-1][j] + CS[i][j]
    return CCS

def string_to_runLength(S: str): #文字列/リストからラングレス圧縮
    grouped = groupby(S)
    res = []
    for k, v in grouped:
        res.append((k, int(len(list(v)))))
    return res

def runLength_to_string(L: "list[tuple]"): #ラングレス圧縮から文字列 => 文字だけ
    res = ""
    for c, n in L:
        res += c * int(n)
    return res

def bfs(i,m = mod): # i:始点 m:mod(デフォ998244353) => dist,pre,dp
    n = len(G)
    dist = [-1] * n
    dp = [0] * n
    pre = [-1] * n
    que = deque()
    dp[i] = 1
    dist[i] = 0
    que.append(i)
    while que:
        v = que.popleft()
        for next_v in G[v]:
            if dist[next_v] != -1:
                if(dist[next_v]==dist[v]+1):
                    dp[next_v] += dp[v]
                    dp[next_v] %= m
                continue
            dist[next_v] = dist[v] + 1
            dp[next_v] += dp[v]
            dp[next_v] %= m
            pre[next_v] = v
            que.append(next_v)
    return dist,pre,dp

def coordinates(A): # 変換表(元の値 : 座標圧縮の値),変換表2(座標圧縮の値: 元の値), 圧縮後配列
    B = sorted(set(A))
    C = { v: i for i, v in enumerate(B) }
    D = { i: v for i, v in enumerate(B) }
    E = list(map(lambda v: C[v], A))
    return C, D, E

def eng_L(): return list(string.ascii_lowercase)

def ENG_L(): return list(string.ascii_uppercase)

def bitLength(n): #bit長
    return n.bit_length()

def bitCount(n): # bitにしたときの1の数
    cnt = 0
    for i in range(bitLength(n)+5):
        cnt += n>>i & 1
    return cnt

def idx_le(A, x): # x 以下の最大の要素位置 / なければ "No"
    return bisect_right(A, x)-1 if bisect_right(A, x)-1 != -1 else "No"

def idx_lt(A, x):  # x 未満の最大の要素位置 / なければ "No"
    return bisect_left(A, x)-1 if bisect_right(A, x)-1 != -1 else "No"

def idx_ge(A, x): # x 以上の最小の要素位置 / なければ "No"
    return bisect_left(A, x) if bisect_left(A, x) != len(A) else "No"

def idx_gt(A, x): # x 超過の最小の要素位置 / なければ "No"
    return bisect_right(A, x) if bisect_right(A, x) != len(A) else "No"

def cnt_le(A, x): # x 以下の要素の個数
    if(idx_le(A, x) == "No"): return 0
    return idx_le(A, x) + 1

def cnt_lt(A, x): # x 未満の要素の個数
    if(idx_lt(A, x) == "No"): return 0
    return idx_lt(A, x) + 1

def cnt_ge(A, x): # x 以上の要素の個数
    return len(A) - cnt_lt(A, x)
    
def cnt_gt(A, x): # x 超過の要素の個数
    return len(A) - cnt_le(A, x)

###幾何/数学ライブラリ###
def MEX(A): #配列AのMEXを求める
    A.sort()
    if(A[0]!=0):
        return 0
    mex = 0
    for i in range(1,len(A)):
        if(A[i]==A[i-1]+1):
            mex+=1
        else:
            break
    return mex+1

def GCD(a,b): #aとbの最大公約数を求める
    return math.gcd(a,b)

def LCM(a,b): #aとbの最小公倍数を求める
    return a*b//GCD(a,b)

def factorial(n, m=0): #nの階乗 | m:mod(デフォなし)
    if(n<0):
        return -1
    elif(n==0):
        return 1
    P = 1
    for i in range(1,n+1):
        P *= i
        if(m==0):
          continue        
        P %= m
    return P

def nPr(n, r, m=0): #順列nPr
    if(n<=0 or r<0 or n<r):
        return -1
    if(r==0):
        return 1
    P = 1
    for i in range(n,n-r,-1):
        P *= i
        if(m==0):
          continue
        P %= m
    return P

def nCr(n, r, m=0): #組み合わせnCr
    if(n<r):
        return 0
    if(n==r):
        return 1
    if(n<=0 or r<0 or n<r):
        return -1
    N = 1
    for i in range(r):
        N *= n-i
        if(m==0):
            continue
        N %= m
    R = factorial(r)
    return N//R

def nCrm(n,r,m=mod): #逆元を用いた組み合わせnCr%mod
    if(n<r):
        return 0
    if(n==r):
        return 1
    if(n<=0 or r<0 or n<r):
        return -1
    over=1
    for i in range(n-r+1,n+1):
        over *= i
        over %= m
    under=1
    for i in range(1,r+1):
        under *= i
        under %= m
    return over*pow(under,m-2,m)%m

def is_prime(n): #素数判定 => True/False
    if n == 2:
        return 1
    if n == 1 or n%2 == 0:
        return 0
    m = n - 1
    lsb = m & -m
    s = lsb.bit_length()-1
    d = m // lsb
    test_numbers = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
    for a in test_numbers:
        if a == n:
            continue
        x = pow(a,d,n)
        r = 0
        if x == 1:
            continue
        while x != m:
            x = pow(x,2,n)
            r += 1
            if x == 1 or r == s:
                return 0
    return 1

def prime_L(n): #nまでの素数のリスト
    is_prime = [True] * (n + 1)
    is_prime[0] = False
    is_prime[1] = False
    for i in range(2, int(n**0.5) + 1):
        if not is_prime[i]:
            continue
        for j in range(i * 2, n + 1, i):
            is_prime[j] = False
    return [i for i in range(n + 1) if is_prime[i]]

def find_prime_factor(n):
    if n%2 == 0:
        return 2
    m = int(n**0.125)+1
    for c in range(1,n):
        f = lambda a: (pow(a,2,n)+c)%n
        y = 0
        g = q = r = 1
        k = 0
        while g == 1:
            x = y
            while k < 3*r//4:
                y = f(y)
                k += 1
            while k < r and g == 1:
                ys = y
                for _ in range(min(m, r-k)):
                    y = f(y)
                    q = q*abs(x-y)%n
                g = math.gcd(q,n)
                k += m
            k = r
            r *= 2
        if g == n:
            g = 1
            y = ys
            while g == 1:
                y = f(y)
                g = math.gcd(abs(x-y),n)
        if g == n:
            continue
        if is_prime(g):
            return g
        elif is_prime(n//g):
            return n//g
        else:
            return find_prime_factor(g)
 
def primeFactorization_2L(n): #2以上の整数n => [[素因数, 指数], ...]の2次元リスト
    if(n<=10**6):
        arr = []
        temp = n
        for i in range(2, int(-(-n**0.5//1))+1):
            if temp%i==0:
                cnt=0
                while temp%i==0:
                    cnt+=1
                    temp //= i
                arr.append([i, cnt])
        if temp!=1:
            arr.append([temp, 1])
        if arr==[]:
            arr.append([n, 1])
        return arr
    else:
        res = {}
        while not is_prime(n) and n > 1:
            p = find_prime_factor(n)
            s = 0
            while n%p == 0:
                n //= p
                s += 1
            res[p] = s
        if n > 1:
            res[n] = 1
        R = []
        for r in res:
            R.append([r,res[r]])
        R.sort()
        return R
 
def divisor_L(n): #nまでの約数のリスト
    if(n==1):
        return [1]
    if(n<=10**6):
        lower_divisors , upper_divisors = [], []
        i = 1
        while i*i <= n:
            if n % i == 0:
                lower_divisors.append(i)
                if i != n // i:
                    upper_divisors.append(n//i)
            i += 1
        return lower_divisors + upper_divisors[::-1]
    else:
        L = primeFactorization_2L(n)
        E = [[]for i in range(len(L))]
        for i in range(len(L)):
            for j in range(L[i][1]+1):
                E[i].append(L[i][0]**j)
        D = []
        for p in list(itertools.product(*E)):
            s = 1
            for v in p:
                s *= v
            D.append(s)
        D.sort()
        return D

def floorsqrt(n): # N => ⌊√N⌋
	# only for n <= 10 ** 18
	ok = 10 ** 9 + 10
	ng = 0
	while ok - ng > 1:
		t = (ok + ng) // 2
		if t * t > n: ok = t
		else: ng = t
	return ng

def decimal_to_nAry(num_10,n): #10進数からn進数へ変換する(n<=36) |int型 => str型
    str_n = []
    while num_10:
        if num_10%n >= 10:
            str_n.append(chr(num_10%n+55))
        else:
            str_n.append(str(num_10%n))
        num_10 //= n
    return "".join(str_n[::-1])

def nAry_to_decimal(X,n): #n進数から10進数へ変換する(n<=36) | str型 => int型
    num = 0
    X = X.upper()
    X = list(X)
    for i in range(len(X)):
        if(("0"<=X[i]<="9")==False):
            X[i] = str(ord(X[i]) - 55)
    for i in range(1,len(X)+1):
        num += int(X[-i]) * pow(n, (i-1))
    return num

def roundOff(x,d): #四捨五入する x:対象の数字, d:四捨五入する位(正|負) => float型の数値
    return float(Decimal(x).quantize(Decimal(f"1E{d}"), rounding=ROUND_HALF_UP))

def dsin(d): #度数法でsinを計算する
    return math.sin(math.radians(d))

def dcos(d): #度数法でcosを計算する
    return math.cos(math.radians(d))

def rotate(x,y,d,cx=0,cy=0): #P(x,y)をA(cx,cy)を中心としてに反時計回りにd°回転 => [x,y]
  nx = (x-cx)*dcos(d)-(y-cy)*dsin(d)
  ny = (x-cx)*dsin(d)+(y-cy)*dcos(d)
  return [nx+cx,ny+cy]

def findAngle(O,A,B): #∠AOBを求める(弧度法)
    s = [A[0]-O[0],A[1]-O[1]]
    t = [B[0]-O[0],B[1]-O[1]]
    u = s[0]*t[0]+s[1]*t[1]
    l = (s[0]**2+s[1]**2)**(1/2) * (t[0]**2+t[1]**2)**(1/2)
    v = u/l
    t = math.degrees(math.acos(v))
    return t

def outerProduct(Av,Bv): #二次元ベクトルの外積(=符号付面積)を求める(a×b)
    return Av[0]*Bv[1] - Bv[0]*Av[1]

def CCW(O,A,B): #Oを中心として、Aから見たAとBの位置関係を求める。
    # -1: 時計回り, 0: 一直線上, 1: 反時計回り
    s = [A[0]-O[0],A[1]-O[1]]
    t = [B[0]-O[0],B[1]-O[1]]
    op = outerProduct(s,t)
    if(op > 0): return 1
    if(op < 0): return -1
    if(op == 0): return 0

def matrixMultiplication_2D(a,b,m): #行列の掛け算(a×b) m:mod
    I,J,K,L = len(a),len(b[0]),len(b),len(a[0])
    if(L!=K):
        return -1
    c = [[0] * J for _ in range(I)]
    for i in range(I) :
        for j in range(J) :
            for k in range(K) :
                c[i][j] += a[i][k] * b[k][j]
            c[i][j] %= m
    return c

def matrixExponentiation_2D(x,n,m): #行列の累乗 (x^n) m:mod
    y = [[0] * len(x) for _ in range(len(x))]
    for i in range(len(x)):
        y[i][i] = 1
    while n > 0:
        if n & 1:
            y = matrixMultiplication_2D(x,y,m)
        x = matrixMultiplication_2D(x,x,m)
        n >>= 1
    return y

def twoCircles(A,B): #二つの円の半径の位置関係 | 引数はそれぞれ[x,y(=座標),r(=半径)]
    # 1 : 一方の円が他方の円を完全に含み、2 つの円は接していない
    # 2 : 一方の円が他方の円を完全に含み、2 つの円は接している
    # 3 : 2 つの円が互いに交差する
    # 4 : 2 つの円の内部に共通部分は存在しないが、2 つの円は接している
    # 5 : 2 つの円の内部に共通部分は存在せず、2 つの円は接していない
    x1 = A[0]
    x2 = B[0]
    y1 = A[1]
    y2 = B[1]
    r1 = A[2]
    r2 = B[2]
    d = abs((x1-x2)+1j*(y1-y2))
    if(abs(r2-r1)>d):
        return 1
    elif(abs(r2-r1)==d):
        return 2
    elif(r1+r2>d):
        return 3
    elif(r1+r2==d):
        return 4
    elif(r1+r2<d):
        return 5

###デバッグ用ライブラリ###
def TS(_str): #変数/リストに格納されている値を確認
    print('{}: {}'.format(_str, eval(_str)))

def T2d(A): #二次元配列の確認用
    for a in A:
        print(*a)

def BR(): #横線で区切りを入れる
    print("---")

#クラス----------------------------------------------------------------------

#カンニングペーパー-----------------------------------------------------------
'''
###標準ライブラリ###
ceil(a,b): #切り捨て
mul(a,b,p): #mod pでのa/bの割り算(bとpは互いに素)
transpose(A): #二次元配列の転置
removeDuplicates_2D(A): #二次元配列の重複削除
cumulativeSum_1D(A) #配列Aの累積和
cumulativeSum_2D(S): #二次元配列Sの累積和 => 二次元リスト
string_to_runLength(S: str) #文字列/リストからラングレス圧縮 => [(文字,個数), ...]の二次元リスト
runLength_to_string(L: "list[tuple]") #ラングレス圧縮 => 文字列
bfs(i,m = mod) # i:始点 m:mod(デフォ998244353) => dist,pre,dp
coordinates(A) # 変換表(元の値 : 座標圧縮の値),変換表2(座標圧縮の値: 元の値), 圧縮後配列
eng_L() #英小文字のリスト
ENG_L() #英大文字のリスト
bitLength(n): #bit長
bitCount(n): # bitにしたときの1の数
idx_le(A, x) # x 以下の最大の要素位置 / なければ "No"
idx_lt(A, x) # x 未満の最大の要素位置 / なければ "No"
idx_ge(A, x) # x 以上の最小の要素位置 / なければ "No"
idx_gt(A, x) # x 超過の最小の要素位置 / なければ "No"
cnt_le(A, x) # x 以下の要素の個数
cnt_lt(A, x) # x 未満の要素の個数
cnt_ge(A, x) # x 以上の要素の個数
cnt_gt(A, x) # x 超過の要素の個数

###幾何/数学ライブラリ###
MEX(A) #配列AのMEXを求める
GCD(a,b) #aとbの最大公約数を求める
LCM(a,b) #aとbの最小公倍数を求める
factorial(n,m) #nの階乗 | m:mod(デフォなし)
nPr(n,r,m) #順列nPr | m:mod(デフォなし)
nCr(n,r,m) #組み合わせ,nCr | m:mod(デフォなし)
nCrm(n,r,m) #逆元を用いた組み合わせnCr%mod
divisor_L(n) #nの約数のリスト
is_prime(n) #素数判定 => True/False
prime_L(n) #nまでの素数のリスト
primeFactorization_2L(n) #2以上の整数n => [[素因数, 指数], ...]の2次元リスト
floorsqrt(n): # N => ⌊√N⌋
decimal_to_nAry(num_10,n) #10進数からn進数へ変換する(n<=36) |int型 => str型
nAry_to_decimal(num_n,n) #n進数から10進数へ変換する(n<=36) | str型 => int型
roundOff(x,d): #四捨五入する x:対象の数字, d:四捨五入する位(正|負) => float型の数値
dsin(d): #度数法でsinを計算する
dcos(d): #度数法でcosを計算する
rotate(x,y,d,cx,cy): #P(x,y)をA(cx,cy)を中心としてに反時計回りにd°回転(デフォ原点) => [x,y]
findAngle(O,A,B) #∠AOBを求める(弧度法) | 引数はそれぞれ[x,y(=座標)]
outerProduct(Av,Bv) #二次元ベクトルの外積(=符号付面積)を求める(a×b) | 引数はそれぞれ[x,y(=座標)]
CCW(O,A,B) #Oを中心として、Aから見たAとBの位置関係
=> -1:時計回り, 0:一直線上, 1:反時計回り | 引数はそれぞれ[x,y(=座標)]
matrixMultiplication_2D(a,b,m) #行列の掛け算(a×b) m:mod | 引数は二次元リスト
matrixExponentiation_2D(x,n m)#行列の累乗 (x^n) m:mod | 引数は二次元リスト
twoCircles(A,B): #二つの円の半径の位置関係 | 引数はそれぞれ[x,y(=座標),r(=半径)]
=> 1, 2, 3, 4, 5 各数字に対応する位置関係の説明は上記参照 

###デバッグ用ライブラリ###
TS(_str) #変数/リストに格納されている値を確認 => 〇〇:××
T2d(A): #二次元配列の確認用
BR() #横線で区切りを入れる

###文法チートシート###
|S|<x => "0"*(x-|S|) + S : str(n).zfill(x)
全部大文字に変換:str.upper()
全部小文字に変換:str.lower()
先頭のみ大文字に変換:str.capitalize()
各単語の先頭のみ大文字に変換(タイトルケース):str.title()
大文字と小文字を入れ替える:str.swapcase()
文字 → ASCIIコード ord(s)
ASCIIコード → 文字 chr(x)
ASCII表
65:A ~ 90:Z
97:a ~ 122:z
'''

#PyPyで再帰関数を用いる場合はコメントを外す----------------------------------
# import pypyjit
# pypyjit.set_param('max_unroll_recursion=-1')

#----------------------------------------------------------------------------

n,k = MI()

ans = mul(k*(k-1)*n, pow(k,n), mod)
print(ans)



0