結果

問題 No.2365 Present of good number
ユーザー 👑 emthrmemthrm
提出日時 2023-06-30 21:37:31
言語 C++23
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 8,677 bytes
コンパイル時間 2,832 ms
コンパイル使用メモリ 276,784 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-07-07 09:15:18
合計ジャッジ時間 4,125 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 1 ms
6,812 KB
testcase_01 AC 2 ms
6,944 KB
testcase_02 AC 3 ms
6,944 KB
testcase_03 AC 3 ms
6,940 KB
testcase_04 AC 2 ms
6,944 KB
testcase_05 AC 2 ms
6,944 KB
testcase_06 AC 2 ms
6,940 KB
testcase_07 AC 2 ms
6,940 KB
testcase_08 AC 2 ms
6,940 KB
testcase_09 AC 2 ms
6,940 KB
testcase_10 AC 2 ms
6,944 KB
testcase_11 AC 2 ms
6,940 KB
testcase_12 AC 2 ms
6,944 KB
testcase_13 AC 2 ms
6,940 KB
testcase_14 AC 2 ms
6,944 KB
testcase_15 AC 2 ms
6,944 KB
testcase_16 AC 1 ms
6,940 KB
testcase_17 AC 2 ms
6,940 KB
testcase_18 AC 1 ms
6,944 KB
testcase_19 AC 2 ms
6,940 KB
testcase_20 AC 2 ms
6,940 KB
testcase_21 AC 1 ms
6,940 KB
testcase_22 AC 2 ms
6,940 KB
testcase_23 AC 2 ms
6,944 KB
testcase_24 AC 1 ms
6,940 KB
testcase_25 AC 2 ms
6,940 KB
testcase_26 AC 2 ms
6,944 KB
testcase_27 AC 2 ms
6,940 KB
testcase_28 AC 2 ms
6,944 KB
testcase_29 AC 2 ms
6,940 KB
testcase_30 AC 1 ms
6,940 KB
testcase_31 AC 1 ms
6,940 KB
testcase_32 AC 1 ms
6,944 KB
testcase_33 AC 1 ms
6,940 KB
testcase_34 AC 1 ms
6,940 KB
testcase_35 AC 1 ms
6,944 KB
testcase_36 AC 2 ms
6,944 KB
testcase_37 AC 3 ms
6,944 KB
testcase_38 AC 2 ms
6,940 KB
testcase_39 AC 2 ms
6,944 KB
testcase_40 AC 2 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <bits/stdc++.h>
using namespace std;
#define FOR(i,m,n) for(int i=(m);i<(n);++i)
#define REP(i,n) FOR(i,0,n)
#define ALL(v) (v).begin(),(v).end()
using ll = long long;
constexpr int INF = 0x3f3f3f3f;
constexpr long long LINF = 0x3f3f3f3f3f3f3f3fLL;
constexpr double EPS = 1e-8;
// constexpr int MOD = 998244353;
constexpr int MOD = 1000000007;
constexpr int DY4[]{1, 0, -1, 0}, DX4[]{0, -1, 0, 1};
constexpr int DY8[]{1, 1, 0, -1, -1, -1, 0, 1};
constexpr int DX8[]{0, -1, -1, -1, 0, 1, 1, 1};
template <typename T, typename U>
inline bool chmax(T& a, U b) { return a < b ? (a = b, true) : false; }
template <typename T, typename U>
inline bool chmin(T& a, U b) { return a > b ? (a = b, true) : false; }
struct IOSetup {
  IOSetup() {
    std::cin.tie(nullptr);
    std::ios_base::sync_with_stdio(false);
    std::cout << fixed << setprecision(20);
  }
} iosetup;

template <unsigned int M>
struct MInt {
  unsigned int v;

  constexpr MInt() : v(0) {}
  constexpr MInt(const long long x) : v(x >= 0 ? x % M : x % M + M) {}
  static constexpr MInt raw(const int x) {
    MInt x_;
    x_.v = x;
    return x_;
  }

  static constexpr int get_mod() { return M; }
  static constexpr void set_mod(const int divisor) {
    assert(std::cmp_equal(divisor, M));
  }

  static void init(const int x) {
    inv<true>(x);
    fact(x);
    fact_inv(x);
  }

  template <bool MEMOIZES = false>
  static MInt inv(const int n) {
    // assert(0 <= n && n < M && std::gcd(n, M) == 1);
    static std::vector<MInt> inverse{0, 1};
    const int prev = inverse.size();
    if (n < prev) return inverse[n];
    if constexpr (MEMOIZES) {
      // "n!" and "M" must be disjoint.
      inverse.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        inverse[i] = -inverse[M % i] * raw(M / i);
      }
      return inverse[n];
    }
    int u = 1, v = 0;
    for (unsigned int a = n, b = M; b;) {
      const unsigned int q = a / b;
      std::swap(a -= q * b, b);
      std::swap(u -= q * v, v);
    }
    return u;
  }

  static MInt fact(const int n) {
    static std::vector<MInt> factorial{1};
    if (const int prev = factorial.size(); n >= prev) {
      factorial.resize(n + 1);
      for (int i = prev; i <= n; ++i) {
        factorial[i] = factorial[i - 1] * i;
      }
    }
    return factorial[n];
  }

  static MInt fact_inv(const int n) {
    static std::vector<MInt> f_inv{1};
    if (const int prev = f_inv.size(); n >= prev) {
      f_inv.resize(n + 1);
      f_inv[n] = inv(fact(n).v);
      for (int i = n; i > prev; --i) {
        f_inv[i - 1] = f_inv[i] * i;
      }
    }
    return f_inv[n];
  }

  static MInt nCk(const int n, const int k) {
    if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
    return fact(n) * (n - k < k ? fact_inv(k) * fact_inv(n - k) :
                                  fact_inv(n - k) * fact_inv(k));
  }
  static MInt nPk(const int n, const int k) {
    return n < 0 || n < k || k < 0 ? MInt() : fact(n) * fact_inv(n - k);
  }
  static MInt nHk(const int n, const int k) {
    return n < 0 || k < 0 ? MInt() : (k == 0 ? 1 : nCk(n + k - 1, k));
  }

  static MInt large_nCk(long long n, const int k) {
    if (n < 0 || n < k || k < 0) [[unlikely]] return MInt();
    inv<true>(k);
    MInt res = 1;
    for (int i = 1; i <= k; ++i) {
      res *= inv(i) * n--;
    }
    return res;
  }

  constexpr MInt pow(long long exponent) const {
    MInt res = 1, tmp = *this;
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }

  constexpr MInt& operator+=(const MInt& x) {
    if ((v += x.v) >= M) v -= M;
    return *this;
  }
  constexpr MInt& operator-=(const MInt& x) {
    if ((v += M - x.v) >= M) v -= M;
    return *this;
  }
  constexpr MInt& operator*=(const MInt& x) {
    v = (unsigned long long){v} * x.v % M;
    return *this;
  }
  MInt& operator/=(const MInt& x) { return *this *= inv(x.v); }

  constexpr auto operator<=>(const MInt& x) const = default;

  constexpr MInt& operator++() {
    if (++v == M) [[unlikely]] v = 0;
    return *this;
  }
  constexpr MInt operator++(int) {
    const MInt res = *this;
    ++*this;
    return res;
  }
  constexpr MInt& operator--() {
    v = (v == 0 ? M - 1 : v - 1);
    return *this;
  }
  constexpr MInt operator--(int) {
    const MInt res = *this;
    --*this;
    return res;
  }

  constexpr MInt operator+() const { return *this; }
  constexpr MInt operator-() const { return raw(v ? M - v : 0); }

  constexpr MInt operator+(const MInt& x) const { return MInt(*this) += x; }
  constexpr MInt operator-(const MInt& x) const { return MInt(*this) -= x; }
  constexpr MInt operator*(const MInt& x) const { return MInt(*this) *= x; }
  MInt operator/(const MInt& x) const { return MInt(*this) /= x; }

  friend std::ostream& operator<<(std::ostream& os, const MInt& x) {
    return os << x.v;
  }
  friend std::istream& operator>>(std::istream& is, MInt& x) {
    long long v;
    is >> v;
    x = MInt(v);
    return is;
  }
};
using ModInt = MInt<MOD>;

template <bool GETS_ONLY_PRIME>
std::vector<int> prime_sieve(const int n) {
  std::vector<int> smallest_prime_factor(n + 1), prime;
  std::iota(smallest_prime_factor.begin(), smallest_prime_factor.end(), 0);
  for (int i = 2; i <= n; ++i) {
    if (smallest_prime_factor[i] == i) [[unlikely]] prime.emplace_back(i);
    for (const int p : prime) {
      if (i * p > n || p > smallest_prime_factor[i]) break;
      smallest_prime_factor[i * p] = p;
    }
  }
  return GETS_ONLY_PRIME ? prime : smallest_prime_factor;
}

struct OsaK {
  const std::vector<int> smallest_prime_factor;

  explicit OsaK(const int n) : smallest_prime_factor(prime_sieve<false>(n)) {}

  std::vector<std::pair<int, int>> query(int n) const {
    std::vector<std::pair<int, int>> res;
    while (n > 1) {
      const int prime = smallest_prime_factor[n];
      int exponent = 0;
      for (; smallest_prime_factor[n] == prime; n /= prime) {
        ++exponent;
      }
      res.emplace_back(prime, exponent);
    }
    return res;
  }
};

template <typename T>
struct Matrix {
  explicit Matrix(const int m, const int n, const T def = 0)
      : data(m, std::vector<T>(n, def)) {}

  int nrow() const { return data.size(); }
  int ncol() const { return data.front().size(); }

  Matrix pow(long long exponent) const {
    const int n = nrow();
    Matrix<T> res(n, n, 0), tmp = *this;
    for (int i = 0; i < n; ++i) {
      res[i][i] = 1;
    }
    for (; exponent > 0; exponent >>= 1) {
      if (exponent & 1) res *= tmp;
      tmp *= tmp;
    }
    return res;
  }

  inline const std::vector<T>& operator[](const int i) const { return data[i]; }
  inline std::vector<T>& operator[](const int i) { return data[i]; }

  Matrix& operator=(const Matrix& x) = default;

  Matrix& operator+=(const Matrix& x) {
    const int m = nrow(), n = ncol();
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        data[i][j] += x[i][j];
      }
    }
    return *this;
  }

  Matrix& operator-=(const Matrix& x) {
    const int m = nrow(), n = ncol();
    for (int i = 0; i < m; ++i) {
      for (int j = 0; j < n; ++j) {
        data[i][j] -= x[i][j];
      }
    }
    return *this;
  }

  Matrix& operator*=(const Matrix& x) {
    const int m = nrow(), l = ncol(), n = x.ncol();
    std::vector<std::vector<T>> res(m, std::vector<T>(n, 0));
    for (int i = 0; i < m; ++i) {
      for (int k = 0; k < l; ++k) {
        for (int j = 0; j < n; ++j) {
          res[i][j] += data[i][k] * x[k][j];
        }
      }
    }
    data.swap(res);
    return *this;
  }

  Matrix operator+(const Matrix& x) const { return Matrix(*this) += x; }
  Matrix operator-(const Matrix& x) const { return Matrix(*this) -= x; }
  Matrix operator*(const Matrix& x) const { return Matrix(*this) *= x; }

 private:
  std::vector<std::vector<T>> data;
};

int main() {
  using MIntEx = MInt<MOD - 1>;
  int n; ll k; cin >> n >> k;
  const OsaK osa_k(n + 1);
  map<int, MIntEx> pf;
  for (const auto& [p, e] : osa_k.query(n)) {
    pf.emplace(p, e);
  }
  for (; k > 0 && pf.rbegin()->first > 3; --k) {
    map<int, MIntEx> mp;
    for (const auto& [p, e] : pf) {
      for (const auto& [np, ne] : osa_k.query(p + 1)) mp[np] += e * ne;
    }
    pf.swap(mp);
  }
  if (k == 0) {
    ModInt ans = 1;
    for (const auto& [p, e] : pf) ans *= ModInt(p).pow(e.v);
    cout << ans << '\n';
    return 0;
  }
  Matrix<MIntEx> matrix(2, 2);
  matrix[0][1] = 2;
  matrix[1][0] = 1;
  matrix = matrix.pow(k);
  cout << ModInt(2).pow((matrix[0][0] * pf[2] + matrix[0][1] * pf[3]).v)
          * ModInt(3).pow((matrix[1][0] * pf[2] + matrix[1][1] * pf[3]).v)
       << '\n';
  return 0;
}
0