結果
問題 | No.2365 Present of good number |
ユーザー |
|
提出日時 | 2023-06-30 22:53:29 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 17 ms / 2,000 ms |
コード長 | 31,558 bytes |
コンパイル時間 | 3,373 ms |
コンパイル使用メモリ | 243,044 KB |
最終ジャッジ日時 | 2025-02-15 04:26:41 |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 39 |
ソースコード
#include <bits/stdc++.h>using i32 = int;using u32 = unsigned int;using i64 = long long;using u64 = unsigned long long;using i128 = __int128_t;using u128 = __uint128_t;using f64 = double;using f80 = long double;using f128 = __float128;constexpr i32 operator"" _i32(u64 v) { return v; }constexpr u32 operator"" _u32(u64 v) { return v; }constexpr i64 operator"" _i64(u64 v) { return v; }constexpr u64 operator"" _u64(u64 v) { return v; }constexpr f64 operator"" _f64(f80 v) { return v; }constexpr f80 operator"" _f80(f80 v) { return v; }using Istream = std::istream;using Ostream = std::ostream;using Str = std::string;template<typename T>using Lt = std::less<T>;template<typename T>using Gt = std::greater<T>;template<int n>using BSet = std::bitset<n>;template<typename T1, typename T2>using Pair = std::pair<T1, T2>;template<typename... Ts>using Tup = std::tuple<Ts...>;template<typename T, int N>using Arr = std::array<T, N>;template<typename... Ts>using Deq = std::deque<Ts...>;template<typename... Ts>using Set = std::set<Ts...>;template<typename... Ts>using MSet = std::multiset<Ts...>;template<typename... Ts>using USet = std::unordered_set<Ts...>;template<typename... Ts>using UMSet = std::unordered_multiset<Ts...>;template<typename... Ts>using Map = std::map<Ts...>;template<typename... Ts>using MMap = std::multimap<Ts...>;template<typename... Ts>using UMap = std::unordered_map<Ts...>;template<typename... Ts>using UMMap = std::unordered_multimap<Ts...>;template<typename... Ts>using Vec = std::vector<Ts...>;template<typename... Ts>using Stack = std::stack<Ts...>;template<typename... Ts>using Queue = std::queue<Ts...>;template<typename T>using MaxHeap = std::priority_queue<T>;template<typename T>using MinHeap = std::priority_queue<T, Vec<T>, Gt<T>>;constexpr bool LOCAL = false;constexpr bool OJ = not LOCAL;template<typename T>static constexpr T OjLocal(T oj, T local){return LOCAL ? local : oj;}template<typename T>constexpr T LIMMIN = std::numeric_limits<T>::min();template<typename T>constexpr T LIMMAX = std::numeric_limits<T>::max();template<typename T = i64>constexpr T INF = (LIMMAX<T> - 1) / 2;template<typename T = f80>constexpr T PI = T{3.141592653589793238462643383279502884};template<typename T = u64>constexpr T TEN(int n){return n == 0 ? T{1} : TEN<T>(n - 1) * T{10};}template<typename T>constexpr bool chmin(T& a, const T& b){return (a > b ? (a = b, true) : false);}template<typename T>constexpr bool chmax(T& a, const T& b){return (a < b ? (a = b, true) : false);}template<typename T>constexpr T floorDiv(T x, T y){assert(y != 0);if (y < 0) { x = -x, y = -y; }return x >= 0 ? x / y : (x - y + 1) / y;}template<typename T>constexpr T ceilDiv(T x, T y){assert(y != 0);if (y < 0) { x = -x, y = -y; }return x >= 0 ? (x + y - 1) / y : x / y;}template<typename T, typename I>constexpr T powerMonoid(T v, I n, const T& e){assert(n >= 0);if (n == 0) { return e; }return (n % 2 == 1 ? v * powerMonoid(v, n - 1, e) : powerMonoid(v * v, n / 2, e));}template<typename T, typename I>constexpr T powerInt(T v, I n){return powerMonoid(v, n, T{1});}template<typename Vs, typename... Args>constexpr auto accumAll(const Vs& vs, Args... args){return std::accumulate(std::begin(vs), std::end(vs), args...);}template<typename Vs>constexpr auto sumAll(const Vs& vs){return accumAll(vs, decltype(vs[0]){});}template<typename Vs>constexpr auto gcdAll(const Vs& vs){return accumAll(vs, decltype(vs[0]){}, [&](auto v1, auto v2) { return std::gcd(v1, v2); });}template<typename Vs, typename V>constexpr int lbInd(const Vs& vs, const V& v){return std::lower_bound(std::begin(vs), std::end(vs), v) - std::begin(vs);}template<typename Vs, typename V>constexpr int ubInd(const Vs& vs, const V& v){return std::upper_bound(std::begin(vs), std::end(vs), v) - std::begin(vs);}template<typename Vs>constexpr void concat(Vs& vs1, const Vs vs2){std::copy(std::begin(vs2), std::end(vs2), std::back_inserter(vs1));}template<typename Vs>constexpr Vs concatted(Vs vs1, const Vs& vs2){concat(vs1, vs2);return vs1;}template<typename Vs, typename V>constexpr void fillAll(Vs& arr, const V& v){if constexpr (std::is_convertible<V, Vs>::value) {arr = v;} else {for (auto& subarr : arr) { fillAll(subarr, v); }}}template<typename T, typename F>constexpr Vec<T> genVec(int n, F gen){Vec<T> ans;std::generate_n(std::back_inserter(ans), n, gen);return ans;}template<typename Vs>constexpr auto maxAll(const Vs& vs){return *std::max_element(std::begin(vs), std::end(vs));}template<typename Vs>constexpr auto minAll(const Vs& vs){return *std::min_element(std::begin(vs), std::end(vs));}template<typename Vs>constexpr auto maxInd(const Vs& vs){return *std::max_element(std::begin(vs), std::end(vs));}template<typename Vs>constexpr int minInd(const Vs& vs){return std::min_element(std::begin(vs), std::end(vs)) - std::begin(vs);}template<typename Vs>constexpr int maxInd(const Vs& vs){return std::max_element(std::begin(vs), std::end(vs)) - std::begin(vs);}template<typename T = int>constexpr Vec<T> iotaVec(int n, T offset = 0){Vec<T> ans(n);std::iota(std::begin(ans), std::end(ans), offset);return ans;}template<typename Vs>constexpr Vec<int> iotaSort(const Vs& vs){auto is = iotaVec(vs.size());std::sort(std::begin(is), std::end(is), [&](int i, int j) { return vs[i] < vs[j]; });return is;}inline Vec<int> permInv(const Vec<int>& is){auto ris = is;for (int i = 0; i < (int)is.size(); i++) { ris[is[i]] = i; }return ris;}template<typename Vs, typename V>constexpr void plusAll(Vs& vs, const V& v){for (auto& v_ : vs) { v_ += v; }}template<typename Vs>constexpr void reverseAll(Vs& vs){std::reverse(std::begin(vs), std::end(vs));}template<typename Vs>constexpr Vs reversed(Vs vs){reverseAll(vs);return vs;}template<typename Vs, typename... Args>constexpr void sortAll(Vs& vs, Args... args){std::sort(std::begin(vs), std::end(vs), args...);}template<typename Vs, typename... Args>constexpr Vs sorted(Vs vs, Args... args){sortAll(vs, args...);return vs;}inline Ostream& operator<<(Ostream& os, i128 v){bool minus = false;if (v < 0) { minus = true, v = -v; }Str ans;if (v == 0) { ans = "0"; }while (v) { ans.push_back('0' + v % 10), v /= 10; }std::reverse(ans.begin(), ans.end());return os << (minus ? "-" : "") << ans;}inline Ostream& operator<<(Ostream& os, u128 v){Str ans;if (v == 0) { ans = "0"; }while (v) { ans.push_back('0' + v % 10), v /= 10; }std::reverse(ans.begin(), ans.end());return os << ans;}constexpr bool isBitOn(u64 mask, int ind) { return (mask >> ind) & 1_u64; }constexpr bool isBitOff(u64 mask, int ind) { return not isBitOn(mask, ind); }constexpr int topBit(u64 v) { return v == 0 ? -1 : 63 - __builtin_clzll(v); }constexpr int lowBit(u64 v) { return v == 0 ? 64 : __builtin_ctzll(v); }constexpr int bitWidth(u64 v) { return topBit(v) + 1; }constexpr u64 bitCeil(u64 v) { return v ? (1_u64 << bitWidth(v - 1)) : 1_u64; }constexpr u64 bitFloor(u64 v) { return v ? (1_u64 << topBit(v)) : 0_u64; }constexpr bool hasSingleBit(u64 v) { return (v > 0) and ((v & (v - 1)) == 0); }constexpr u64 bitMask(int bitWidth) { return (bitWidth == 64 ? ~0_u64 : (1_u64 << bitWidth) - 1); }constexpr u64 bitMask(int start, int end) { return bitMask(end - start) << start; }constexpr int popCount(u64 v) { return v ? __builtin_popcountll(v) : 0; }constexpr bool popParity(u64 v) { return v > 0 and __builtin_parity(v) == 1; }template<typename F>struct Fix : F{constexpr Fix(F&& f) : F{std::forward<F>(f)} {}template<typename... Args>constexpr auto operator()(Args&&... args) const{return F::operator()(*this, std::forward<Args>(args)...);}};class irange{private:struct itr{constexpr itr(i64 start = 0, i64 step = 1) : m_cnt{start}, m_step{step} {}constexpr bool operator!=(const itr& it) const { return m_cnt != it.m_cnt; }constexpr i64 operator*() { return m_cnt; }constexpr itr& operator++() { return m_cnt += m_step, *this; }i64 m_cnt, m_step;};i64 m_start, m_end, m_step;public:static constexpr i64 cnt(i64 start, i64 end, i64 step){if (step == 0) { return -1; }const i64 d = (step > 0 ? step : -step);const i64 l = (step > 0 ? start : end);const i64 r = (step > 0 ? end : start);i64 n = (r - l) / d + ((r - l) % d ? 1 : 0);if (l >= r) { n = 0; }return n;}constexpr irange(i64 start, i64 end, i64 step = 1): m_start{start}, m_end{m_start + step * cnt(start, end, step)}, m_step{step}{assert(step != 0);}constexpr itr begin() const { return itr{m_start, m_step}; }constexpr itr end() const { return itr{m_end, m_step}; }};constexpr irange rep(i64 end) { return irange(0, end, 1); }constexpr irange per(i64 rend) { return irange(rend - 1, -1, -1); }class Scanner{public:Scanner(Istream& is = std::cin) : m_is{is} { m_is.tie(nullptr)->sync_with_stdio(false); }template<typename T>T val(){T v;return m_is >> v, v;}template<typename T>T val(T offset){return val<T>() - offset;}template<typename T>Vec<T> vec(int n){return genVec<T>(n, [&]() { return val<T>(); });}template<typename T>Vec<T> vec(int n, T offset){return genVec<T>(n, [&]() { return val<T>(offset); });}template<typename T>Vec<Vec<T>> vvec(int n, int m){return genVec<Vec<T>>(n, [&]() { return vec<T>(m); });}template<typename T>Vec<Vec<T>> vvec(int n, int m, const T offset){return genVec<Vec<T>>(n, [&]() { return vec<T>(m, offset); });}template<typename... Args>auto tup(){return Tup<Args...>{val<Args>()...};}template<typename... Args>auto tup(Args... offsets){return Tup<Args...>{val<Args>(offsets)...};}private:Istream& m_is;};inline Scanner in;class Printer{public:Printer(Ostream& os = std::cout) : m_os{os} { m_os << std::fixed << std::setprecision(15); }template<typename... Args>int operator()(const Args&... args){return dump(args...), 0;}template<typename... Args>int ln(const Args&... args){return dump(args...), m_os << '\n', 0;}template<typename... Args>int el(const Args&... args){return dump(args...), m_os << std::endl, 0;}int YES(bool b = true) { return ln(b ? "YES" : "NO"); }int NO(bool b = true) { return YES(not b); }int Yes(bool b = true) { return ln(b ? "Yes" : "No"); }int No(bool b = true) { return Yes(not b); }private:template<typename T>void dump(const T& v){m_os << v;}template<typename T>void dump(const Vec<T>& vs){for (int i : rep(vs.size())) { m_os << (i ? " " : ""), dump(vs[i]); }}template<typename T>void dump(const Vec<Vec<T>>& vss){for (int i : rep(vss.size())) { m_os << (i ? "\n" : ""), dump(vss[i]); }}template<typename T, typename... Ts>int dump(const T& v, const Ts&... args){return dump(v), m_os << ' ', dump(args...), 0;}Ostream& m_os;};inline Printer out;template<typename T, int n, int i = 0>auto ndVec(int const (&szs)[n], const T x = T{}){if constexpr (i == n) {return x;} else {return std::vector(szs[i], ndVec<T, n, i + 1>(szs, x));}}template<typename T, typename F>inline T binSearch(T ng, T ok, F check){while (std::abs(ok - ng) > 1) {const T mid = (ok + ng) / 2;(check(mid) ? ok : ng) = mid;}return ok;}template<typename T, typename F>inline T fbinSearch(T ng, T ok, F check, int times){for (auto _temp_name_0 [[maybe_unused]] : rep(times)) {const T mid = (ok + ng) / 2;(check(mid) ? ok : ng) = mid;}return ok;}template<typename T>constexpr T clampAdd(T x, T y, T min, T max){return std::clamp(x + y, min, max);}template<typename T>constexpr T clampSub(T x, T y, T min, T max){return std::clamp(x - y, min, max);}template<typename T>constexpr T clampMul(T x, T y, T min, T max){if (y < 0) { x = -x, y = -y; }const T xmin = ceilDiv(min, y);const T xmax = floorDiv(max, y);if (x < xmin) {return min;} else if (x > xmax) {return max;} else {return x * y;}}template<typename T>constexpr T clampDiv(T x, T y, T min, T max){return std::clamp(floorDiv(x, y), min, max);}template<typename T>constexpr Pair<T, T> extgcd(const T a, const T b) // [x,y] -> ax+by=gcd(a,b){static_assert(std::is_signed_v<T>, "Signed integer is allowed.");assert(a != 0 or b != 0);if (a >= 0 and b >= 0) {if (a < b) {const auto [y, x] = extgcd(b, a);return {x, y};}if (b == 0) { return {1, 0}; }const auto [x, y] = extgcd(b, a % b);return {y, x - (a / b) * y};} else {auto [x, y] = extgcd(std::abs(a), std::abs(b));if (a < 0) { x = -x; }if (b < 0) { y = -y; }return {x, y};}}template<typename T>constexpr T inverse(const T a, const T mod) // ax=gcd(a,M) (mod M){assert(a > 0 and mod > 0);auto [x, y] = extgcd(a, mod);if (x <= 0) { x += mod; }return x;}template<u32 mod_, u32 root_, u32 max2p_>class modint{template<typename U = u32&>static U modRef(){static u32 s_mod = 0;return s_mod;}template<typename U = u32&>static U rootRef(){static u32 s_root = 0;return s_root;}template<typename U = u32&>static U max2pRef(){static u32 s_max2p = 0;return s_max2p;}public:static_assert(mod_ <= LIMMAX<i32>, "mod(signed int size) only supported!");static constexpr bool isDynamic() { return (mod_ == 0); }template<typename U = const u32>static constexpr std::enable_if_t<mod_ != 0, U> mod(){return mod_;}template<typename U = const u32>static std::enable_if_t<mod_ == 0, U> mod(){return modRef();}template<typename U = const u32>static constexpr std::enable_if_t<mod_ != 0, U> root(){return root_;}template<typename U = const u32>static std::enable_if_t<mod_ == 0, U> root(){return rootRef();}template<typename U = const u32>static constexpr std::enable_if_t<mod_ != 0, U> max2p(){return max2p_;}template<typename U = const u32>static std::enable_if_t<mod_ == 0, U> max2p(){return max2pRef();}template<typename U = u32>static void setMod(std::enable_if_t<mod_ == 0, U> m){assert(1 <= m and m <= LIMMAX<i32>);modRef() = m;sinvRef() = {1, 1};factRef() = {1, 1};ifactRef() = {1, 1};}template<typename U = u32>static void setRoot(std::enable_if_t<mod_ == 0, U> r){rootRef() = r;}template<typename U = u32>static void setMax2p(std::enable_if_t<mod_ == 0, U> m){max2pRef() = m;}constexpr modint() : m_val{0} {}constexpr modint(i64 v) : m_val{normll(v)} {}constexpr void setRaw(u32 v) { m_val = v; }constexpr modint operator-() const { return modint{0} - (*this); }constexpr modint& operator+=(const modint& m){m_val = norm(m_val + m.val());return *this;}constexpr modint& operator-=(const modint& m){m_val = norm(m_val + mod() - m.val());return *this;}constexpr modint& operator*=(const modint& m){m_val = normll((i64)m_val * (i64)m.val() % (i64)mod());return *this;}constexpr modint& operator/=(const modint& m) { return *this *= m.inv(); }constexpr modint operator+(const modint& m) const{auto v = *this;return v += m;}constexpr modint operator-(const modint& m) const{auto v = *this;return v -= m;}constexpr modint operator*(const modint& m) const{auto v = *this;return v *= m;}constexpr modint operator/(const modint& m) const{auto v = *this;return v /= m;}constexpr bool operator==(const modint& m) const { return m_val == m.val(); }constexpr bool operator!=(const modint& m) const { return not(*this == m); }friend Istream& operator>>(Istream& is, modint& m){i64 v;return is >> v, m = v, is;}friend Ostream& operator<<(Ostream& os, const modint& m) { return os << m.val(); }constexpr u32 val() const { return m_val; }template<typename I>constexpr modint pow(I n) const{return powerInt(*this, n);}constexpr modint inv() const { return inverse<i32>(m_val, mod()); }static modint sinv(u32 n){auto& is = sinvRef();for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); }return is[n];}static modint fact(u32 n){auto& fs = factRef();for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); }return fs[n];}static modint ifact(u32 n){auto& ifs = ifactRef();for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); }return ifs[n];}static modint perm(int n, int k) { return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k); }static modint comb(int n, int k){return k > n or k < 0 ? modint{0} : fact(n) * ifact(n - k) * ifact(k);}private:static Vec<modint>& sinvRef(){static Vec<modint> is{1, 1};return is;}static Vec<modint>& factRef(){static Vec<modint> fs{1, 1};return fs;}static Vec<modint>& ifactRef(){static Vec<modint> ifs{1, 1};return ifs;}static constexpr u32 norm(u32 x) { return x < mod() ? x : x - mod(); }static constexpr u32 normll(i64 x) { return norm(u32(x % (i64)mod() + (i64)mod())); }u32 m_val;};using modint_1000000007 = modint<1000000007, 5, 1>;using modint_998244353 = modint<998244353, 3, 23>;template<int id>using modint_dynamic = modint<0, 0, id>;template<typename T = int>class Graph{struct Edge{Edge() = default;Edge(int i, int t, T c) : id{i}, to{t}, cost{c} {}int id;int to;T cost;operator int() const { return to; }};public:Graph(int n) : m_v{n}, m_edges(n) {}void addEdge(int u, int v, bool bi = false){assert(0 <= u and u < m_v);assert(0 <= v and v < m_v);m_edges[u].emplace_back(m_e, v, 1);if (bi) { m_edges[v].emplace_back(m_e, u, 1); }m_e++;}void addEdge(int u, int v, const T& c, bool bi = false){assert(0 <= u and u < m_v);assert(0 <= v and v < m_v);m_edges[u].emplace_back(m_e, v, c);if (bi) { m_edges[v].emplace_back(m_e, u, c); }m_e++;}const Vec<Edge>& operator[](const int u) const{assert(0 <= u and u < m_v);return m_edges[u];}Vec<Edge>& operator[](const int u){assert(0 <= u and u < m_v);return m_edges[u];}int v() const { return m_v; }int e() const { return m_e; }friend Ostream& operator<<(Ostream& os, const Graph& g){for (int u : rep(g.v())) {for (const auto& [id, v, c] : g[u]) {os << "[" << id << "]: ";os << u << "->" << v << "(" << c << ")\n";}}return os;}Vec<T> sizes(int root = 0) const{const int N = v();assert(0 <= root and root < N);Vec<T> ss(N, 1);Fix([&](auto dfs, int u, int p) -> void {for ([[maybe_unused]] const auto& [_temp_name_1, v, c] : m_edges[u]) {if (v == p) { continue; }dfs(v, u);ss[u] += ss[v];}})(root, -1);return ss;}Vec<T> depths(int root = 0) const{const int N = v();assert(0 <= root and root < N);Vec<T> ds(N, 0);Fix([&](auto dfs, int u, int p) -> void {for ([[maybe_unused]] const auto& [_temp_name_2, v, c] : m_edges[u]) {if (v == p) { continue; }ds[v] = ds[u] + c;dfs(v, u);}})(root, -1);return ds;}Vec<int> parents(int root = 0) const{const int N = v();assert(0 <= root and root < N);Vec<int> ps(N, -1);Fix([&](auto dfs, int u, int p) -> void {for ([[maybe_unused]] const auto& [_temp_name_3, v, c] : m_edges[u]) {if (v == p) { continue; }ps[v] = u;dfs(v, u);}})(root, -1);return ps;}private:int m_v;int m_e = 0;Vec<Vec<Edge>> m_edges;};template<typename Engine>class RNG{public:using result_type = typename Engine::result_type;using T = result_type;static constexpr T min() { return Engine::min(); }static constexpr T max() { return Engine::max(); }RNG() : RNG(std::random_device{}()) {}RNG(T seed) : m_rng(seed) {}T operator()() { return m_rng(); }template<typename T>T val(T min, T max){return std::uniform_int_distribution<T>(min, max)(m_rng);}template<typename T, typename... Args>auto tup(T min, T max, const Args&... offsets){return Tup<T, Args...>{val<T>(min, max), val<Args>(offsets)...};}template<typename T>Vec<T> vec(int n, T min, T max){return genVec<T>(n, [&]() { return val<T>(min, max); });}template<typename T>Vec<Vec<T>> vvec(int n, int m, T min, T max){return genVec<Vec<T>>(n, [&]() { return vec(m, min, max); });}private:Engine m_rng;};inline RNG<std::mt19937> rng;inline RNG<std::mt19937_64> rng64;template<u64 mod_, u64 root_, u64 max2p_>class modint64{template<typename U = u64&>static U modRef(){static u64 s_mod = 0;return s_mod;}template<typename U = u64&>static U rootRef(){static u64 s_root = 0;return s_root;}template<typename U = u64&>static U max2pRef(){static u64 s_max2p = 0;return s_max2p;}public:static_assert(mod_ <= LIMMAX<i64>, "mod(signed int size) only supported!");static constexpr bool isDynamic() { return (mod_ == 0); }template<typename U = const u64>static constexpr std::enable_if_t<mod_ != 0, U> mod(){return mod_;}template<typename U = const u64>static std::enable_if_t<mod_ == 0, U> mod(){return modRef();}template<typename U = const u64>static constexpr std::enable_if_t<mod_ != 0, U> root(){return root_;}template<typename U = const u64>static std::enable_if_t<mod_ == 0, U> root(){return rootRef();}template<typename U = const u64>static constexpr std::enable_if_t<mod_ != 0, U> max2p(){return max2p_;}template<typename U = const u64>static std::enable_if_t<mod_ == 0, U> max2p(){return max2pRef();}template<typename U = u64>static void setMod(std::enable_if_t<mod_ == 0, U> m){assert(1 <= m and m <= LIMMAX<i64>);modRef() = m;sinvRef() = {1, 1};factRef() = {1, 1};ifactRef() = {1, 1};}template<typename U = u64>static void setRoot(std::enable_if_t<mod_ == 0, U> r){rootRef() = r;}template<typename U = u64>static void setMax2p(std::enable_if_t<mod_ == 0, U> m){max2pRef() = m;}constexpr modint64() : m_val{0} {}constexpr modint64(const i64 v) : m_val{normLL(v)} {}constexpr void setRaw(const u64 v) { m_val = v; }constexpr modint64 operator+() const { return *this; }constexpr modint64 operator-() const { return modint64{0} - (*this); }constexpr modint64& operator+=(const modint64& m){m_val = norm(m_val + m.val());return *this;}constexpr modint64& operator-=(const modint64& m){m_val = norm(m_val + mod() - m.val());return *this;}constexpr modint64& operator*=(const modint64& m){m_val = normLL((i128)m_val * (i128)m.val() % (i128)mod());return *this;}constexpr modint64& operator/=(const modint64& m) { return *this *= m.inv(); }constexpr modint64 operator+(const modint64& m) const{auto v = *this;return v += m;}constexpr modint64 operator-(const modint64& m) const{auto v = *this;return v -= m;}constexpr modint64 operator*(const modint64& m) const{auto v = *this;return v *= m;}constexpr modint64 operator/(const modint64& m) const{auto v = *this;return v /= m;}constexpr bool operator==(const modint64& m) const { return m_val == m.val(); }constexpr bool operator!=(const modint64& m) const { return not(*this == m); }friend Istream& operator>>(Istream& is, modint64& m){i64 v;return is >> v, m = v, is;}friend Ostream& operator<<(Ostream& os, const modint64& m) { return os << m.val(); }constexpr u64 val() const { return m_val; }template<typename I>constexpr modint64 pow(I n) const{return powerInt(*this, n);}constexpr modint64 inv() const { return inverse<i64>(m_val, mod()); }modint64 sinv() const { return sinv(m_val); }static modint64 sinv(u32 n){auto& is = sinvRef();for (u32 i = (u32)is.size(); i <= n; i++) { is.push_back(-is[mod() % i] * (mod() / i)); }return is[n];}static modint64 fact(u32 n){auto& fs = factRef();for (u32 i = (u32)fs.size(); i <= n; i++) { fs.push_back(fs.back() * i); }return fs[n];}static modint64 ifact(u32 n){auto& ifs = ifactRef();for (u32 i = (u32)ifs.size(); i <= n; i++) { ifs.push_back(ifs.back() * sinv(i)); }return ifs[n];}static modint64 perm(int n, int k){return k > n or k < 0 ? modint64{0} : fact(n) * ifact(n - k);}static modint64 comb(int n, int k){return k > n or k < 0 ? modint64{0} : fact(n) * ifact(n - k) * ifact(k);}private:static Vec<modint64>& sinvRef(){static Vec<modint64> is{1, 1};return is;}static Vec<modint64>& factRef(){static Vec<modint64> fs{1, 1};return fs;}static Vec<modint64>& ifactRef(){static Vec<modint64> ifs{1, 1};return ifs;}static constexpr u64 norm(const u64 x) { return x < mod() ? x : x - mod(); }static constexpr u64 normLL(const i64 x){return norm(u64((i128)x % (i128)mod() + (i128)mod()));}u64 m_val;};template<int id>using modint64_dynamic = modint64<0, 0, id>;template<typename mint>bool millerRabin(u64 n, const Vec<u64>& as){auto d = n - 1;for (; (d & 1) == 0; d >>= 1) {}for (const u64 a : as) {if (n <= a) { break; }auto s = d;mint x = mint(a).pow(s);while (x.val() != 1 and x.val() != n - 1 and s != n - 1) { x *= x, s <<= 1; }if (x.val() != n - 1 and s % 2 == 0) { return false; }}return true;}inline bool isPrime(u64 n){using mint = modint_dynamic<873293817>;using mint64 = modint64_dynamic<828271328>;if (n == 1) { return false; }if ((n & 1) == 0) { return n == 2; }if (n < (1ULL << 30)) {mint::setMod(n);return millerRabin<mint>(n, {2, 7, 61});} else {mint64::setMod(n);return millerRabin<mint64>(n, {2, 325, 9375, 28178, 450775, 9780504});}}template<typename mint>u64 pollardRho(u64 n){if (n % 2 == 0) { return 2; }if (isPrime(n)) { return n; }mint c;auto f = [&](const mint& x) { return x * x + c; };while (true) {mint x, y, ys, q = 1;y = rng64.val<u64>(0, n - 2) + 2;c = rng64.val<u64>(0, n - 2) + 2;u64 d = 1;constexpr u32 dk = 128;for (u32 r = 1; d == 1; r <<= 1) {x = y;for (u32 i = 0; i < r; i++) { y = f(y); }for (u32 k = 0; k < r and d == 1; k += dk) {ys = y;for (u32 i = 0; i < dk and i < r - k; i++) { q *= x - (y = f(y)); }d = std::gcd((u64)q.val(), n);}}if (d == n) {do {d = std::gcd(u64((x - (ys = f(ys))).val()), n);} while (d == 1);}if (d != n) { return d; }}return n;}Map<u64, int> primeFactors(u64 n){using mint = modint_dynamic<287687412>;using mint64 = modint64_dynamic<4832432>;Map<u64, int> ans;Fix([&](auto dfs, u64 x) -> void {while ((x & 1) == 0) { x >>= 1, ans[2]++; }if (x == 1) { return; }u64 p;if (x < (1ULL << 30)) {mint::setMod(x);p = pollardRho<mint>(x);} else {mint64::setMod(x);p = pollardRho<mint64>(x);}if (p == x) {ans[p]++;return;}dfs(p), dfs(x / p);})(n);return ans;}Vec<u64> divisors(const u64 n){const auto fs = primeFactors(n);Vec<u64> ds{1};for (const auto& [p, e] : fs) {u64 pe = p;const u32 dn = ds.size();for (i32 i = 0; i < e; i++, pe *= p) {for (u32 j = 0; j < dn; j++) { ds.push_back(ds[j] * pe); }}}return ds;}int main(){auto [N, K] = in.tup<int, i64>();auto fs = primeFactors(N);while (K > 0) {Map<u64, int> nfs;for (const auto& [p, e] : fs) {const int q = p + 1;for (const auto& [np, ne] : primeFactors(q)) {nfs[np] += ne * e;}}std::swap(fs, nfs);K--;if (nfs.rbegin()->first <= 3) {break;}}constexpr int M = TEN(9) + 7;using mint = modint<M, 0, 0>;if (K == 0) {mint P = 1;for (const auto& [p, e] : fs) {P *= mint(p).pow(e);}out.ln(P);} else {using mint2 = modint<M - 1, 0, 0>;mint2 x = fs[2], y = fs[3];const i64 H = K / 2;x *= mint2(2).pow(H), y *= mint2(2).pow(H);if (K % 2 == 1) {mint2 nx = y * 2, ny = x;x = nx, y = ny;}out.ln(mint(2).pow(x.val()) * mint(3).pow(y.val()));}return 0;}