結果
問題 | No.2365 Present of good number |
ユーザー | suisen |
提出日時 | 2023-06-30 23:10:14 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 6 ms / 2,000 ms |
コード長 | 37,311 bytes |
コンパイル時間 | 3,348 ms |
コンパイル使用メモリ | 329,568 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-07 11:05:35 |
合計ジャッジ時間 | 4,728 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 6 ms
6,812 KB |
testcase_01 | AC | 6 ms
6,940 KB |
testcase_02 | AC | 6 ms
6,940 KB |
testcase_03 | AC | 6 ms
6,944 KB |
testcase_04 | AC | 6 ms
6,944 KB |
testcase_05 | AC | 6 ms
6,944 KB |
testcase_06 | AC | 6 ms
6,940 KB |
testcase_07 | AC | 6 ms
6,940 KB |
testcase_08 | AC | 6 ms
6,940 KB |
testcase_09 | AC | 6 ms
6,944 KB |
testcase_10 | AC | 6 ms
6,940 KB |
testcase_11 | AC | 6 ms
6,940 KB |
testcase_12 | AC | 6 ms
6,940 KB |
testcase_13 | AC | 6 ms
6,940 KB |
testcase_14 | AC | 6 ms
6,944 KB |
testcase_15 | AC | 5 ms
6,944 KB |
testcase_16 | AC | 5 ms
6,940 KB |
testcase_17 | AC | 6 ms
6,944 KB |
testcase_18 | AC | 6 ms
6,944 KB |
testcase_19 | AC | 6 ms
6,940 KB |
testcase_20 | AC | 6 ms
6,944 KB |
testcase_21 | AC | 6 ms
6,940 KB |
testcase_22 | AC | 6 ms
6,940 KB |
testcase_23 | AC | 6 ms
6,940 KB |
testcase_24 | AC | 6 ms
6,940 KB |
testcase_25 | AC | 6 ms
6,944 KB |
testcase_26 | AC | 6 ms
6,940 KB |
testcase_27 | AC | 6 ms
6,940 KB |
testcase_28 | AC | 6 ms
6,940 KB |
testcase_29 | AC | 6 ms
6,940 KB |
testcase_30 | AC | 6 ms
6,940 KB |
testcase_31 | AC | 6 ms
6,940 KB |
testcase_32 | AC | 6 ms
6,944 KB |
testcase_33 | AC | 6 ms
6,944 KB |
testcase_34 | AC | 6 ms
6,944 KB |
testcase_35 | AC | 6 ms
6,944 KB |
testcase_36 | AC | 6 ms
6,940 KB |
testcase_37 | AC | 6 ms
6,944 KB |
testcase_38 | AC | 6 ms
6,944 KB |
testcase_39 | AC | 6 ms
6,940 KB |
testcase_40 | AC | 6 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> #ifdef _MSC_VER # include <intrin.h> #else # include <x86intrin.h> #endif #include <limits> #include <type_traits> namespace suisen { // ! utility template <typename ...Types> using constraints_t = std::enable_if_t<std::conjunction_v<Types...>, std::nullptr_t>; template <bool cond_v, typename Then, typename OrElse> constexpr decltype(auto) constexpr_if(Then&& then, OrElse&& or_else) { if constexpr (cond_v) { return std::forward<Then>(then); } else { return std::forward<OrElse>(or_else); } } // ! function template <typename ReturnType, typename Callable, typename ...Args> using is_same_as_invoke_result = std::is_same<std::invoke_result_t<Callable, Args...>, ReturnType>; template <typename F, typename T> using is_uni_op = is_same_as_invoke_result<T, F, T>; template <typename F, typename T> using is_bin_op = is_same_as_invoke_result<T, F, T, T>; template <typename Comparator, typename T> using is_comparator = std::is_same<std::invoke_result_t<Comparator, T, T>, bool>; // ! integral template <typename T, typename = constraints_t<std::is_integral<T>>> constexpr int bit_num = std::numeric_limits<std::make_unsigned_t<T>>::digits; template <typename T, unsigned int n> struct is_nbit { static constexpr bool value = bit_num<T> == n; }; template <typename T, unsigned int n> static constexpr bool is_nbit_v = is_nbit<T, n>::value; // ? template <typename T> struct safely_multipliable {}; template <> struct safely_multipliable<int> { using type = long long; }; template <> struct safely_multipliable<long long> { using type = __int128_t; }; template <> struct safely_multipliable<unsigned int> { using type = unsigned long long; }; template <> struct safely_multipliable<unsigned long int> { using type = __uint128_t; }; template <> struct safely_multipliable<unsigned long long> { using type = __uint128_t; }; template <> struct safely_multipliable<float> { using type = float; }; template <> struct safely_multipliable<double> { using type = double; }; template <> struct safely_multipliable<long double> { using type = long double; }; template <typename T> using safely_multipliable_t = typename safely_multipliable<T>::type; template <typename T, typename = void> struct rec_value_type { using type = T; }; template <typename T> struct rec_value_type<T, std::void_t<typename T::value_type>> { using type = typename rec_value_type<typename T::value_type>::type; }; template <typename T> using rec_value_type_t = typename rec_value_type<T>::type; } // namespace suisen // ! type aliases using i128 = __int128_t; using u128 = __uint128_t; template <typename T> using pq_greater = std::priority_queue<T, std::vector<T>, std::greater<T>>; // ! macros (internal) #define DETAIL_OVERLOAD2(_1,_2,name,...) name #define DETAIL_OVERLOAD3(_1,_2,_3,name,...) name #define DETAIL_OVERLOAD4(_1,_2,_3,_4,name,...) name #define DETAIL_REP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l);i<(r);i+=(s)) #define DETAIL_REP3(i,l,r) DETAIL_REP4(i,l,r,1) #define DETAIL_REP2(i,n) DETAIL_REP3(i,0,n) #define DETAIL_REPINF3(i,l,s) for(std::remove_reference_t<std::remove_const_t<decltype(l)>>i=(l);;i+=(s)) #define DETAIL_REPINF2(i,l) DETAIL_REPINF3(i,l,1) #define DETAIL_REPINF1(i) DETAIL_REPINF2(i,0) #define DETAIL_RREP4(i,l,r,s) for(std::remove_reference_t<std::remove_const_t<decltype(r)>>i=(l)+fld((r)-(l)-1,s)*(s);i>=(l);i-=(s)) #define DETAIL_RREP3(i,l,r) DETAIL_RREP4(i,l,r,1) #define DETAIL_RREP2(i,n) DETAIL_RREP3(i,0,n) #define DETAIL_CAT_I(a, b) a##b #define DETAIL_CAT(a, b) DETAIL_CAT_I(a, b) #define DETAIL_UNIQVAR(tag) DETAIL_CAT(tag, __LINE__) // ! macros #define REP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_REP4 , DETAIL_REP3 , DETAIL_REP2 )(__VA_ARGS__) #define RREP(...) DETAIL_OVERLOAD4(__VA_ARGS__, DETAIL_RREP4 , DETAIL_RREP3 , DETAIL_RREP2 )(__VA_ARGS__) #define REPINF(...) DETAIL_OVERLOAD3(__VA_ARGS__, DETAIL_REPINF3, DETAIL_REPINF2, DETAIL_REPINF1)(__VA_ARGS__) #define LOOP(n) for (std::remove_reference_t<std::remove_const_t<decltype(n)>> DETAIL_UNIQVAR(loop_variable) = n; DETAIL_UNIQVAR(loop_variable) --> 0;) #define ALL(iterable) std::begin(iterable), std::end(iterable) #define INPUT(type, ...) type __VA_ARGS__; read(__VA_ARGS__) // ! debug #ifdef LOCAL # define debug(...) debug_internal(#__VA_ARGS__, __VA_ARGS__) template <class T, class... Args> void debug_internal(const char* s, T&& first, Args&&... args) { constexpr const char* prefix = "[\033[32mDEBUG\033[m] "; constexpr const char* open_brakets = sizeof...(args) == 0 ? "" : "("; constexpr const char* close_brakets = sizeof...(args) == 0 ? "" : ")"; std::cerr << prefix << open_brakets << s << close_brakets << ": " << open_brakets << std::forward<T>(first); ((std::cerr << ", " << std::forward<Args>(args)), ...); std::cerr << close_brakets << "\n"; } #else # define debug(...) void(0) #endif // ! I/O utilities // __int128_t std::ostream& operator<<(std::ostream& dest, __int128_t value) { std::ostream::sentry s(dest); if (s) { __uint128_t tmp = value < 0 ? -value : value; char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[tmp % 10]; tmp /= 10; } while (tmp != 0); if (value < 0) { --d; *d = '-'; } int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // __uint128_t std::ostream& operator<<(std::ostream& dest, __uint128_t value) { std::ostream::sentry s(dest); if (s) { char buffer[128]; char* d = std::end(buffer); do { --d; *d = "0123456789"[value % 10]; value /= 10; } while (value != 0); int len = std::end(buffer) - d; if (dest.rdbuf()->sputn(d, len) != len) { dest.setstate(std::ios_base::badbit); } } return dest; } // pair template <typename T, typename U> std::ostream& operator<<(std::ostream& out, const std::pair<T, U>& a) { return out << a.first << ' ' << a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::ostream& operator<<(std::ostream& out, const std::tuple<Args...>& a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return out; else { out << std::get<N>(a); if constexpr (N + 1 < std::tuple_size_v<std::tuple<Args...>>) out << ' '; return operator<<<N + 1>(out, a); } } // vector template <typename T> std::ostream& operator<<(std::ostream& out, const std::vector<T>& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } // array template <typename T, size_t N> std::ostream& operator<<(std::ostream& out, const std::array<T, N>& a) { for (auto it = a.begin(); it != a.end();) { out << *it; if (++it != a.end()) out << ' '; } return out; } inline void print() { std::cout << '\n'; } template <typename Head, typename... Tail> inline void print(const Head& head, const Tail &...tails) { std::cout << head; if (sizeof...(tails)) std::cout << ' '; print(tails...); } template <typename Iterable> auto print_all(const Iterable& v, std::string sep = " ", std::string end = "\n") -> decltype(std::cout << *v.begin(), void()) { for (auto it = v.begin(); it != v.end();) { std::cout << *it; if (++it != v.end()) std::cout << sep; } std::cout << end; } __int128_t stoi128(const std::string& s) { __int128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; if (s[0] == '-') ret = -ret; return ret; } __uint128_t stou128(const std::string& s) { __uint128_t ret = 0; for (int i = 0; i < int(s.size()); i++) if ('0' <= s[i] and s[i] <= '9') ret = 10 * ret + s[i] - '0'; return ret; } // __int128_t std::istream& operator>>(std::istream& in, __int128_t& v) { std::string s; in >> s; v = stoi128(s); return in; } // __uint128_t std::istream& operator>>(std::istream& in, __uint128_t& v) { std::string s; in >> s; v = stou128(s); return in; } // pair template <typename T, typename U> std::istream& operator>>(std::istream& in, std::pair<T, U>& a) { return in >> a.first >> a.second; } // tuple template <unsigned int N = 0, typename ...Args> std::istream& operator>>(std::istream& in, std::tuple<Args...>& a) { if constexpr (N >= std::tuple_size_v<std::tuple<Args...>>) return in; else return operator>><N + 1>(in >> std::get<N>(a), a); } // vector template <typename T> std::istream& operator>>(std::istream& in, std::vector<T>& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } // array template <typename T, size_t N> std::istream& operator>>(std::istream& in, std::array<T, N>& a) { for (auto it = a.begin(); it != a.end(); ++it) in >> *it; return in; } template <typename ...Args> void read(Args &...args) { (std::cin >> ... >> args); } // ! integral utilities // Returns pow(-1, n) template <typename T> constexpr inline int pow_m1(T n) { return -(n & 1) | 1; } // Returns pow(-1, n) template <> constexpr inline int pow_m1<bool>(bool n) { return -int(n) | 1; } // Returns floor(x / y) template <typename T> constexpr inline T fld(const T x, const T y) { return (x ^ y) >= 0 ? x / y : (x - (y + pow_m1(y >= 0))) / y; } template <typename T> constexpr inline T cld(const T x, const T y) { return (x ^ y) <= 0 ? x / y : (x + (y + pow_m1(y >= 0))) / y; } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u32(x); } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> __attribute__((target("popcnt"))) constexpr inline int popcount(const T x) { return _mm_popcnt_u64(x); } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clz(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> constexpr inline int count_lz(const T x) { return x ? __builtin_clzll(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<std::negation_v<suisen::is_nbit<T, 64>>, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctz(x) : suisen::bit_num<T>; } template <typename T, std::enable_if_t<suisen::is_nbit_v<T, 64>, std::nullptr_t> = nullptr> constexpr inline int count_tz(const T x) { return x ? __builtin_ctzll(x) : suisen::bit_num<T>; } template <typename T> constexpr inline int floor_log2(const T x) { return suisen::bit_num<T> - 1 - count_lz(x); } template <typename T> constexpr inline int ceil_log2(const T x) { return floor_log2(x) + ((x & -x) != x); } template <typename T> constexpr inline int kth_bit(const T x, const unsigned int k) { return (x >> k) & 1; } template <typename T> constexpr inline int parity(const T x) { return popcount(x) & 1; } // ! container template <typename T, typename Comparator> auto priqueue_comp(const Comparator comparator) { return std::priority_queue<T, std::vector<T>, Comparator>(comparator); } template <typename Container> void sort_unique_erase(Container& a) { std::sort(a.begin(), a.end()); a.erase(std::unique(a.begin(), a.end()), a.end()); } template <typename InputIterator, typename BiConsumer> auto foreach_adjacent_values(InputIterator first, InputIterator last, BiConsumer f) -> decltype(f(*first++, *last), void()) { if (first != last) for (auto itr = first, itl = itr++; itr != last; itl = itr++) f(*itl, *itr); } template <typename Container, typename BiConsumer> auto foreach_adjacent_values(Container &&c, BiConsumer f) -> decltype(c.begin(), c.end(), void()) { foreach_adjacent_values(c.begin(), c.end(), f); } // ! other utilities // x <- min(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmin(T& x, const T& y) { return y >= x ? false : (x = y, true); } // x <- max(x, y). returns true iff `x` has chenged. template <typename T> inline bool chmax(T& x, const T& y) { return y <= x ? false : (x = y, true); } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::string bin(T val, int bit_num = -1) { std::string res; if (bit_num != -1) { for (int bit = bit_num; bit-- > 0;) res += '0' + ((val >> bit) & 1); } else { for (; val; val >>= 1) res += '0' + (val & 1); std::reverse(res.begin(), res.end()); } return res; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<T> digits_low_to_high(T val, T base = 10) { std::vector<T> res; for (; val; val /= base) res.push_back(val % base); if (res.empty()) res.push_back(T{ 0 }); return res; } template <typename T, std::enable_if_t<std::is_integral_v<T>, std::nullptr_t> = nullptr> std::vector<T> digits_high_to_low(T val, T base = 10) { auto res = digits_low_to_high(val, base); std::reverse(res.begin(), res.end()); return res; } template <typename T> std::string join(const std::vector<T>& v, const std::string& sep, const std::string& end) { std::ostringstream ss; for (auto it = v.begin(); it != v.end();) { ss << *it; if (++it != v.end()) ss << sep; } ss << end; return ss.str(); } template <typename Func, typename Seq> auto transform_to_vector(const Func &f, const Seq &s) { std::vector<std::invoke_result_t<Func, typename Seq::value_type>> v; v.reserve(std::size(s)), std::transform(std::begin(s), std::end(s), std::back_inserter(v), f); return v; } template <typename T, typename Seq> auto copy_to_vector(const Seq &s) { std::vector<T> v; v.reserve(std::size(s)), std::copy(std::begin(s), std::end(s), std::back_inserter(v)); return v; } template <typename Seq> Seq concat(Seq s, const Seq &t) { s.reserve(std::size(s) + std::size(t)); std::copy(std::begin(t), std::end(t), std::back_inserter(s)); return s; } template <typename Seq> std::vector<Seq> split(const Seq s, typename Seq::value_type delim) { std::vector<Seq> res; for (auto itl = std::begin(s), itr = itl;; itl = ++itr) { while (itr != std::end(s) and *itr != delim) ++itr; res.emplace_back(itl, itr); if (itr == std::end(s)) return res; } } int digit_to_int(char c) { return c - '0'; } int lowercase_to_int(char c) { return c - 'a'; } int uppercase_to_int(char c) { return c - 'A'; } std::vector<int> digit_str_to_ints(const std::string &s) { return transform_to_vector(digit_to_int, s); } std::vector<int> lowercase_str_to_ints(const std::string &s) { return transform_to_vector(lowercase_to_int, s); } std::vector<int> uppercase_str_to_ints(const std::string &s) { return transform_to_vector(uppercase_to_int, s); } template <typename T, typename ToKey, typename CompareValue = std::less<>, std::enable_if_t< std::conjunction_v< std::is_invocable<ToKey, T>, std::is_invocable_r<bool, CompareValue, std::invoke_result_t<ToKey, T>, std::invoke_result_t<ToKey, T> > >, std::nullptr_t> = nullptr > auto comparator(const ToKey &to_key, const CompareValue &compare_value = std::less<>()) { return [to_key, compare_value](const T& x, const T& y) { return compare_value(to_key(x), to_key(y)); }; } template <typename ToKey, std::enable_if_t<std::is_invocable_v<ToKey, int>, std::nullptr_t> = nullptr> std::vector<int> sorted_indices(int n, const ToKey &to_key) { std::vector<int> p(n); std::iota(p.begin(), p.end(), 0); std::sort(p.begin(), p.end(), comparator<int>(to_key)); return p; } template <typename Compare, std::enable_if_t<std::is_invocable_r_v<bool, Compare, int, int>, std::nullptr_t> = nullptr> std::vector<int> sorted_indices(int n, const Compare &compare) { std::vector<int> p(n); std::iota(p.begin(), p.end(), 0); std::sort(p.begin(), p.end(), compare); return p; } const std::string Yes = "Yes", No = "No", YES = "YES", NO = "NO"; namespace suisen {} using namespace suisen; using namespace std; struct io_setup { io_setup(int precision = 20) { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::cout << std::fixed << std::setprecision(precision); } } io_setup_ {}; // ! code from here #include <cassert> #include <cmath> #include <vector> #include <cstdint> namespace suisen::internal::sieve { constexpr std::uint8_t K = 8; constexpr std::uint8_t PROD = 2 * 3 * 5; constexpr std::uint8_t RM[K] = { 1, 7, 11, 13, 17, 19, 23, 29 }; constexpr std::uint8_t DR[K] = { 6, 4, 2, 4, 2, 4, 6, 2 }; constexpr std::uint8_t DF[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 1 }, { 1, 1, 1, 0, 1, 1, 1, 1 }, { 2, 2, 0, 2, 0, 2, 2, 1 }, { 3, 1, 1, 2, 1, 1, 3, 1 }, { 3, 3, 1, 2, 1, 3, 3, 1 }, { 4, 2, 2, 2, 2, 2, 4, 1 }, { 5, 3, 1, 4, 1, 3, 5, 1 }, { 6, 4, 2, 4, 2, 4, 6, 1 }, }; constexpr std::uint8_t DRP[K] = { 48, 32, 16, 32, 16, 32, 48, 16 }; constexpr std::uint8_t DFP[K][K] = { { 0, 0, 0, 0, 0, 0, 0, 8 }, { 8, 8, 8, 0, 8, 8, 8, 8 }, { 16, 16, 0, 16, 0, 16, 16, 8 }, { 24, 8, 8, 16, 8, 8, 24, 8 }, { 24, 24, 8, 16, 8, 24, 24, 8 }, { 32, 16, 16, 16, 16, 16, 32, 8 }, { 40, 24, 8, 32, 8, 24, 40, 8 }, { 48, 32, 16, 32, 16, 32, 48, 8 }, }; constexpr std::uint8_t MASK[K][K] = { { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }, { 0x02, 0x20, 0x10, 0x01, 0x80, 0x08, 0x04, 0x40 }, { 0x04, 0x10, 0x01, 0x40, 0x02, 0x80, 0x08, 0x20 }, { 0x08, 0x01, 0x40, 0x20, 0x04, 0x02, 0x80, 0x10 }, { 0x10, 0x80, 0x02, 0x04, 0x20, 0x40, 0x01, 0x08 }, { 0x20, 0x08, 0x80, 0x02, 0x40, 0x01, 0x10, 0x04 }, { 0x40, 0x04, 0x08, 0x80, 0x01, 0x10, 0x20, 0x02 }, { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 }, }; constexpr std::uint8_t OFFSET[K][K] = { { 0, 1, 2, 3, 4, 5, 6, 7, }, { 1, 5, 4, 0, 7, 3, 2, 6, }, { 2, 4, 0, 6, 1, 7, 3, 5, }, { 3, 0, 6, 5, 2, 1, 7, 4, }, { 4, 7, 1, 2, 5, 6, 0, 3, }, { 5, 3, 7, 1, 6, 0, 4, 2, }, { 6, 2, 3, 7, 0, 4, 5, 1, }, { 7, 6, 5, 4, 3, 2, 1, 0, }, }; constexpr std::uint8_t mask_to_index(const std::uint8_t bits) { switch (bits) { case 1 << 0: return 0; case 1 << 1: return 1; case 1 << 2: return 2; case 1 << 3: return 3; case 1 << 4: return 4; case 1 << 5: return 5; case 1 << 6: return 6; case 1 << 7: return 7; default: assert(false); } } } // namespace suisen::internal::sieve namespace suisen { template <unsigned int N> class SimpleSieve { private: static constexpr unsigned int siz = N / internal::sieve::PROD + 1; static std::uint8_t flag[siz]; public: SimpleSieve() { using namespace internal::sieve; flag[0] |= 1; unsigned int k_max = (unsigned int) std::sqrt(N + 2) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { for (std::uint8_t bits = ~flag[kp]; bits; bits &= bits - 1) { const std::uint8_t mp = mask_to_index(bits & -bits), m = RM[mp]; unsigned int kr = kp * (PROD * kp + 2 * m) + m * m / PROD; for (std::uint8_t mq = mp; kr < siz; kr += kp * DR[mq] + DF[mp][mq], ++mq &= 7) { flag[kr] |= MASK[mp][mq]; } } } } std::vector<int> prime_list(unsigned int max_val = N) const { using namespace internal::sieve; std::vector<int> res { 2, 3, 5 }; res.reserve(max_val / 25); for (unsigned int i = 0, offset = 0; i < siz and offset < max_val; ++i, offset += PROD) { for (uint8_t f = ~flag[i]; f;) { uint8_t g = f & -f; res.push_back(offset + RM[mask_to_index(g)]); f ^= g; } } while (res.size() and (unsigned int) res.back() > max_val) res.pop_back(); return res; } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return ((flag[p / PROD] >> 0) & 1) == 0; case RM[1]: return ((flag[p / PROD] >> 1) & 1) == 0; case RM[2]: return ((flag[p / PROD] >> 2) & 1) == 0; case RM[3]: return ((flag[p / PROD] >> 3) & 1) == 0; case RM[4]: return ((flag[p / PROD] >> 4) & 1) == 0; case RM[5]: return ((flag[p / PROD] >> 5) & 1) == 0; case RM[6]: return ((flag[p / PROD] >> 6) & 1) == 0; case RM[7]: return ((flag[p / PROD] >> 7) & 1) == 0; default: return false; } } } }; template <unsigned int N> std::uint8_t SimpleSieve<N>::flag[SimpleSieve<N>::siz]; template <unsigned int N> class Sieve { private: static constexpr unsigned int base_max = (N + 1) * internal::sieve::K / internal::sieve::PROD; static unsigned int pf[base_max + internal::sieve::K]; public: Sieve() { using namespace internal::sieve; pf[0] = 1; unsigned int k_max = ((unsigned int) std::sqrt(N + 1) - 1) / PROD; for (unsigned int kp = 0; kp <= k_max; ++kp) { const int base_i = kp * K, base_act_i = kp * PROD; for (int mp = 0; mp < K; ++mp) { const int m = RM[mp], i = base_i + mp; if (pf[i] == 0) { unsigned int act_i = base_act_i + m; unsigned int base_k = (kp * (PROD * kp + 2 * m) + m * m / PROD) * K; for (std::uint8_t mq = mp; base_k <= base_max; base_k += kp * DRP[mq] + DFP[mp][mq], ++mq &= 7) { pf[base_k + OFFSET[mp][mq]] = act_i; } } } } } bool is_prime(const unsigned int p) const { using namespace internal::sieve; switch (p) { case 2: case 3: case 5: return true; default: switch (p % PROD) { case RM[0]: return pf[p / PROD * K + 0] == 0; case RM[1]: return pf[p / PROD * K + 1] == 0; case RM[2]: return pf[p / PROD * K + 2] == 0; case RM[3]: return pf[p / PROD * K + 3] == 0; case RM[4]: return pf[p / PROD * K + 4] == 0; case RM[5]: return pf[p / PROD * K + 5] == 0; case RM[6]: return pf[p / PROD * K + 6] == 0; case RM[7]: return pf[p / PROD * K + 7] == 0; default: return false; } } } int prime_factor(const unsigned int p) const { using namespace internal::sieve; switch (p % PROD) { case 0: case 2: case 4: case 6: case 8: case 10: case 12: case 14: case 16: case 18: case 20: case 22: case 24: case 26: case 28: return 2; case 3: case 9: case 15: case 21: case 27: return 3; case 5: case 25: return 5; case RM[0]: return pf[p / PROD * K + 0] ? pf[p / PROD * K + 0] : p; case RM[1]: return pf[p / PROD * K + 1] ? pf[p / PROD * K + 1] : p; case RM[2]: return pf[p / PROD * K + 2] ? pf[p / PROD * K + 2] : p; case RM[3]: return pf[p / PROD * K + 3] ? pf[p / PROD * K + 3] : p; case RM[4]: return pf[p / PROD * K + 4] ? pf[p / PROD * K + 4] : p; case RM[5]: return pf[p / PROD * K + 5] ? pf[p / PROD * K + 5] : p; case RM[6]: return pf[p / PROD * K + 6] ? pf[p / PROD * K + 6] : p; case RM[7]: return pf[p / PROD * K + 7] ? pf[p / PROD * K + 7] : p; default: assert(false); } } /** * Returns a vector of `{ prime, index }`. */ std::vector<std::pair<int, int>> factorize(unsigned int n) const { assert(0 < n and n <= N); std::vector<std::pair<int, int>> prime_powers; while (n > 1) { int p = prime_factor(n), c = 0; do { n /= p, ++c; } while (n % p == 0); prime_powers.emplace_back(p, c); } return prime_powers; } /** * Returns the divisors of `n`. * It is NOT guaranteed that the returned vector is sorted. */ std::vector<int> divisors(unsigned int n) const { assert(0 < n and n <= N); std::vector<int> divs { 1 }; for (auto [prime, index] : factorize(n)) { int sz = divs.size(); for (int i = 0; i < sz; ++i) { int d = divs[i]; for (int j = 0; j < index; ++j) { divs.push_back(d *= prime); } } } return divs; } }; template <unsigned int N> unsigned int Sieve<N>::pf[Sieve<N>::base_max + internal::sieve::K]; } // namespace suisen constexpr int N = 100010; #include <array> #include <optional> namespace suisen { namespace default_operator { template <typename T> auto zero() -> decltype(T { 0 }) { return T { 0 }; } template <typename T> auto one() -> decltype(T { 1 }) { return T { 1 }; } template <typename T> auto add(const T &x, const T &y) -> decltype(x + y) { return x + y; } template <typename T> auto sub(const T &x, const T &y) -> decltype(x - y) { return x - y; } template <typename T> auto mul(const T &x, const T &y) -> decltype(x * y) { return x * y; } template <typename T> auto div(const T &x, const T &y) -> decltype(x / y) { return x / y; } template <typename T> auto mod(const T &x, const T &y) -> decltype(x % y) { return x % y; } template <typename T> auto neg(const T &x) -> decltype(-x) { return -x; } template <typename T> auto inv(const T &x) -> decltype(one<T>() / x) { return one<T>() / x; } } // default_operator namespace default_operator_noref { template <typename T> auto zero() -> decltype(T { 0 }) { return T { 0 }; } template <typename T> auto one() -> decltype(T { 1 }) { return T { 1 }; } template <typename T> auto add(T x, T y) -> decltype(x + y) { return x + y; } template <typename T> auto sub(T x, T y) -> decltype(x - y) { return x - y; } template <typename T> auto mul(T x, T y) -> decltype(x * y) { return x * y; } template <typename T> auto div(T x, T y) -> decltype(x / y) { return x / y; } template <typename T> auto mod(T x, T y) -> decltype(x % y) { return x % y; } template <typename T> auto neg(T x) -> decltype(-x) { return -x; } template <typename T> auto inv(T x) -> decltype(one<T>() / x) { return one<T>() / x; } } // default_operator } // namespace suisen namespace suisen { template < typename T, size_t N, size_t M, T(*_add)(T, T) = default_operator_noref::add<T>, T(*_neg)(T) = default_operator_noref::neg<T>, T(*_zero)() = default_operator_noref::zero<T>, T(*_mul)(T, T) = default_operator_noref::mul<T>, T(*_inv)(T) = default_operator_noref::inv<T>, T(*_one)() = default_operator_noref::one<T> > struct ArrayMatrix : public std::array<std::array<T, M>, N> { private: template <typename DummyType = void> static constexpr bool is_square_v = N == M; template <size_t X, size_t Y> using MatrixType = ArrayMatrix<T, X, Y, _add, _neg, _zero, _mul, _inv, _one>; public: using base_type = std::array<std::array<T, M>, N>; using container_type = base_type; using row_type = std::array<T, M>; using base_type::base_type; ArrayMatrix(T diag_val = _zero()) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) { (*this)[i][j] = (i == j ? diag_val : _zero()); } } ArrayMatrix(const container_type& c) : base_type{ c } {} ArrayMatrix(const std::initializer_list<row_type>& c) { assert(c.size() == N); size_t i = 0; for (const auto& row : c) { for (size_t j = 0; j < M; ++j) (*this)[i][j] = row[j]; ++i; } } static ArrayMatrix e0() { return ArrayMatrix(_zero()); } static MatrixType<M, M> e1() { return MatrixType<M, M>(_one()); } int size() const { static_assert(is_square_v<>); return N; } std::pair<int, int> shape() const { return { N, M }; } int row_size() const { return N; } int col_size() const { return M; } ArrayMatrix operator+() const { return *this; } ArrayMatrix operator-() const { ArrayMatrix A; for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _neg((*this)[i][j]); return A; } friend ArrayMatrix& operator+=(ArrayMatrix& A, const ArrayMatrix& B) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _add(A[i][j], B[i][j]); return A; } friend ArrayMatrix& operator-=(ArrayMatrix& A, const ArrayMatrix& B) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _add(A[i][j], _neg(B[i][j])); return A; } template <size_t K> friend MatrixType<N, K>& operator*=(ArrayMatrix& A, const MatrixType<M, K>& B) { return A = A * B; } friend ArrayMatrix& operator*=(ArrayMatrix& A, const T& val) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _mul(A[i][j], val); return A; } friend ArrayMatrix& operator/=(ArrayMatrix& A, const ArrayMatrix& B) { static_assert(is_square_v<>); return A *= *B.inv(); } friend ArrayMatrix& operator/=(ArrayMatrix& A, const T& val) { return A *= _inv(val); } friend ArrayMatrix operator+(ArrayMatrix A, const ArrayMatrix& B) { A += B; return A; } friend ArrayMatrix operator-(ArrayMatrix A, const ArrayMatrix& B) { A -= B; return A; } template <size_t K> friend MatrixType<N, K> operator*(const ArrayMatrix& A, const MatrixType<M, K>& B) { MatrixType<N, K> C; for (size_t i = 0; i < N; ++i) { C[i].fill(_zero()); for (size_t j = 0; j < M; ++j) for (size_t k = 0; k < K; ++k) C[i][k] = _add(C[i][k], _mul(A[i][j], B[j][k])); } return C; } friend ArrayMatrix operator*(ArrayMatrix A, const T& val) { A *= val; return A; } friend ArrayMatrix operator*(const T& val, ArrayMatrix A) { for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) A[i][j] = _mul(val, A[i][j]); return A; } friend std::array<T, N> operator*(const ArrayMatrix& A, const std::array<T, M>& x) { std::array<T, N> b; b.fill(_zero()); for (size_t i = 0; i < N; ++i) for (size_t j = 0; j < M; ++j) b[i] = _add(b[i], _mul(A[i][j], x[j])); return b; } friend ArrayMatrix operator/(ArrayMatrix A, const ArrayMatrix& B) { static_assert(is_square_v<>); return A * B.inv(); } friend ArrayMatrix operator/(ArrayMatrix A, const T& val) { A /= val; return A; } friend ArrayMatrix operator/(const T& val, ArrayMatrix A) { return A.inv() *= val; } ArrayMatrix pow(long long b) const { static_assert(is_square_v<>); assert(b >= 0); ArrayMatrix res(e1()), p(*this); for (; b; b >>= 1) { if (b & 1) res *= p; p *= p; } return res; } std::optional<ArrayMatrix> safe_inv() const { static_assert(is_square_v<>); std::array<std::array<T, 2 * N>, N> data; for (size_t i = 0; i < N; ++i) { for (size_t j = 0; j < N; ++j) { data[i][j] = (*this)[i][j]; data[i][N + j] = i == j ? _one() : _zero(); } } for (size_t i = 0; i < N; ++i) { for (size_t k = i; k < N; ++k) if (data[k][i] != _zero()) { data[i].swap(data[k]); T c = _inv(data[i][i]); for (size_t j = i; j < 2 * N; ++j) data[i][j] = _mul(c, data[i][j]); break; } if (data[i][i] == _zero()) return std::nullopt; for (size_t k = 0; k < N; ++k) if (k != i and data[k][i] != _zero()) { T c = data[k][i]; for (size_t j = i; j < 2 * N; ++j) data[k][j] = _add(data[k][j], _neg(_mul(c, data[i][j]))); } } ArrayMatrix res; for (size_t i = 0; i < N; ++i) std::copy(data[i].begin() + N, data[i].begin() + 2 * N, res[i].begin()); return res; } ArrayMatrix inv() const { return *safe_inv(); } T det() const { static_assert(is_square_v<>); ArrayMatrix A = *this; bool sgn = false; for (size_t j = 0; j < N; ++j) for (size_t i = j + 1; i < N; ++i) if (A[i][j] != _zero()) { std::swap(A[j], A[i]); T q = _mul(A[i][j], _inv(A[j][j])); for (size_t k = j; k < N; ++k) A[i][k] = _add(A[i][k], _neg(_mul(A[j][k], q))); sgn = not sgn; } T res = sgn ? _neg(_one()) : _one(); for (size_t i = 0; i < N; ++i) res = _mul(res, A[i][i]); return res; } T det_arbitrary_mod() const { static_assert(is_square_v<>); ArrayMatrix A = *this; bool sgn = false; for (size_t j = 0; j < N; ++j) for (size_t i = j + 1; i < N; ++i) { for (; A[i][j].val(); sgn = not sgn) { std::swap(A[j], A[i]); T q = A[i][j].val() / A[j][j].val(); for (size_t k = j; k < N; ++k) A[i][k] -= A[j][k] * q; } } T res = sgn ? -1 : +1; for (size_t i = 0; i < N; ++i) res *= A[i][i]; return res; } }; template < typename T, size_t N, T(*_add)(T, T) = default_operator_noref::add<T>, T(*_neg)(T) = default_operator_noref::neg<T>, T(*_zero)() = default_operator_noref::zero<T>, T(*_mul)(T, T) = default_operator_noref::mul<T>, T(*_inv)(T) = default_operator_noref::inv<T>, T(*_one)() = default_operator_noref::one<T> > using SquareArrayMatrix = ArrayMatrix<T, N, N, _add, _neg, _zero, _mul, _inv, _one>; } // namespace suisen #include <atcoder/modint> using mint = atcoder::modint1000000007; namespace atcoder { std::istream& operator>>(std::istream& in, mint &a) { long long e; in >> e; a = e; return in; } std::ostream& operator<<(std::ostream& out, const mint &a) { out << a.val(); return out; } } // namespace atcoder using mint2 = atcoder::static_modint<mint::mod() - 1>; int main() { int n; long long k; read(n, k); Sieve<N> sieve; vector<vector<pair<int, int>>> g(N); REP(i, 2, N) if (sieve.is_prime(i)) { for (auto [p, q] : sieve.factorize(i + 1)) { g[i].emplace_back(p, q); } } map<int, mint2> mp; for (auto [p, q] : sieve.factorize(n)) { mp[p] += q; } int t = min<long long>(k, 20); LOOP(t) { map<int, mint2> nmp; for (auto [p, q] : mp) { for (auto [np, c] : g[p]) { nmp[np] += q * c; } } mp.swap(nmp); } k -= t; if (k == 0) { mint ans = 1; for (auto [p, q] : mp) { ans *= mint(p).pow(q.val()); } print(ans); return 0; } mint2 c2 = mp[2]; mint2 c3 = mp[3]; SquareArrayMatrix<mint2, 2> A { { 0, 2 }, { 1, 0 } }; auto [nc2, nc3] = A.pow(k) * array<mint2, 2>{ c2, c3 }; c2 = nc2; c3 = nc3; print(mint(2).pow(c2.val()) * mint(3).pow(c3.val())); }