結果
| 問題 |
No.2365 Present of good number
|
| コンテスト | |
| ユーザー |
k1suxu
|
| 提出日時 | 2023-06-30 23:31:29 |
| 言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
|
| 実行時間 | - |
| コード長 | 10,917 bytes |
| コンパイル時間 | 2,695 ms |
| コンパイル使用メモリ | 268,400 KB |
| 実行使用メモリ | 13,760 KB |
| 最終ジャッジ日時 | 2024-07-07 11:23:36 |
| 合計ジャッジ時間 | 6,083 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | TLE * 1 -- * 38 |
ソースコード
// #pragma GCC target("avx")
// #pragma GCC optimize("O3")
// #pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
#define rep(i,n) for(int i = 0; i < (int)n; i++)
#define FOR(n) for(int i = 0; i < (int)n; i++)
#define repi(i,a,b) for(int i = (int)a; i < (int)b; i++)
#define all(x) x.begin(),x.end()
//#define mp make_pair
#define vi vector<int>
#define vvi vector<vi>
#define vvvi vector<vvi>
#define vvvvi vector<vvvi>
#define pii pair<int,int>
#define vpii vector<pair<int,int>>
template<typename T>
void chmax(T &a, const T &b) {a = (a > b? a : b);}
template<typename T>
void chmin(T &a, const T &b) {a = (a < b? a : b);}
using ll = long long;
using ld = long double;
using ull = unsigned long long;
const ll INF = numeric_limits<long long>::max() / 2;
const ld pi = 3.1415926535897932384626433832795028;
const ll mod = 998244353;
int dx[] = {1, 0, -1, 0, -1, -1, 1, 1};
int dy[] = {0, 1, 0, -1, -1, 1, -1, 1};
#define int long long
struct fast_prime_factorizer {
fast_prime_factorizer() = default;
// Miller-Rabin 素数判定法
template<class T> T pow_mod(T A, T N, T M) {
T res = 1 % M;
A %= M;
while (N) {
if (N & 1) res = (res * A) % M;
A = (A * A) % M;
N >>= 1;
}
return res;
}
// Pollard のロー法
long long gcd(long long A, long long B) {
A = abs(A), B = abs(B);
if (B == 0) return A;
else return gcd(B, A % B);
}
long long pollard(long long N) {
if (N % 2 == 0) return 2;
if (is_prime(N)) return N;
auto f = [&](long long x) -> long long {
return (__int128_t(x) * x + 1) % N;
};
long long step = 0;
while (true) {
++step;
long long x = step, y = f(x);
while (true) {
long long p = gcd(y - x + N, N);
if (p == 0 || p == N) break;
if (p != 1) return p;
x = f(x);
y = f(f(y));
}
}
}
bool is_prime(long long N) {
if (N <= 1) return false;
if (N == 2 || N == 3) return true;
if (N % 2 == 0) return false;
vector<long long> A = {2, 325, 9375, 28178, 450775,
9780504, 1795265022};
long long s = 0, d = N - 1;
while (d % 2 == 0) {
++s;
d >>= 1;
}
for (auto a : A) {
if (a % N == 0) return true;
long long t, x = pow_mod<__int128_t>(a, d, N);
if (x != 1) {
for (t = 0; t < s; ++t) {
if (x == N - 1) break;
x = __int128_t(x) * x % N;
}
if (t == s) return false;
}
}
return true;
}
vector<long long> factorize(long long N) {
if (N == 1) return {};
long long p = pollard(N);
if (p == N) return {p};
vector<long long> left = factorize(p);
vector<long long> right = factorize(N / p);
left.insert(left.end(), right.begin(), right.end());
sort(left.begin(), left.end());
return left;
}
}(factorizer);
template<typename T>
vector<pair<T, int>> run_length_encoding(vector<T> s) {
T need = s[0];
int cnt = 0;
vector<pair<T, int>> ret;
for(T c : s) {
if(c == need) {
cnt++;
}else {
ret.emplace_back(need, cnt);
need = c;
cnt = 1;
}
}
if(cnt != 0) ret.emplace_back(need, cnt);
return ret;
}
template<int MOD>
struct Modular_Int {
int x;
Modular_Int() = default;
Modular_Int(int x_) : x(x_ >= 0? x_%MOD : (MOD-(-x_)%MOD)%MOD) {}
int val() const {
return (x%MOD+MOD)%MOD;
}
int get_mod() const {
return MOD;
}
Modular_Int<MOD>& operator^=(int d) {
Modular_Int<MOD> ret(1);
int nx = x;
while(d) {
if(d&1) ret *= nx;
(nx *= nx) %= MOD;
d >>= 1;
}
*this = ret;
return *this;
}
Modular_Int<MOD> operator^(int d) const {return Modular_Int<MOD>(*this) ^= d;}
Modular_Int<MOD> pow(int d) const {return Modular_Int<MOD>(*this) ^= d;}
//use this basically
Modular_Int<MOD> inv() const {
return Modular_Int<MOD>(*this) ^ (MOD-2);
}
//only if the module number is not prime
//Don't use. This is broken.
// Modular_Int<MOD> inv() const {
// int a = (x%MOD+MOD)%MOD, b = MOD, u = 1, v = 0;
// while(b) {
// int t = a/b;
// a -= t*b, swap(a, b);
// u -= t*v, swap(u, v);
// }
// return Modular_Int<MOD>(u);
// }
Modular_Int<MOD>& operator+=(const Modular_Int<MOD> other) {
if((x += other.x) >= MOD) x -= MOD;
return *this;
}
Modular_Int<MOD>& operator-=(const Modular_Int<MOD> other) {
if((x -= other.x) < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator*=(const Modular_Int<MOD> other) {
int z = x;
z *= other.x;
z %= MOD;
x = z;
if(x < 0) x += MOD;
return *this;
}
Modular_Int<MOD>& operator/=(const Modular_Int<MOD> other) {
return *this = *this * other.inv();
}
Modular_Int<MOD>& operator++() {
x++;
if (x == MOD) x = 0;
return *this;
}
Modular_Int<MOD>& operator--() {
if (x == 0) x = MOD;
x--;
return *this;
}
Modular_Int<MOD> operator+(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const Modular_Int<MOD> other) const {return Modular_Int<MOD>(*this) /= other;}
Modular_Int<MOD>& operator+=(const int other) {Modular_Int<MOD> other_(other); *this += other_; return *this;}
Modular_Int<MOD>& operator-=(const int other) {Modular_Int<MOD> other_(other); *this -= other_; return *this;}
Modular_Int<MOD>& operator*=(const int other) {Modular_Int<MOD> other_(other); *this *= other_; return *this;}
Modular_Int<MOD>& operator/=(const int other) {Modular_Int<MOD> other_(other); *this /= other_; return *this;}
Modular_Int<MOD> operator+(const int other) const {return Modular_Int<MOD>(*this) += other;}
Modular_Int<MOD> operator-(const int other) const {return Modular_Int<MOD>(*this) -= other;}
Modular_Int<MOD> operator*(const int other) const {return Modular_Int<MOD>(*this) *= other;}
Modular_Int<MOD> operator/(const int other) const {return Modular_Int<MOD>(*this) /= other;}
bool operator==(const Modular_Int<MOD> other) const {return (*this).val() == other.val();}
bool operator!=(const Modular_Int<MOD> other) const {return (*this).val() != other.val();}
bool operator==(const int other) const {return (*this).val() == other;}
bool operator!=(const int other) const {return (*this).val() != other;}
Modular_Int<MOD> operator-() const {return Modular_Int<MOD>(0LL)-Modular_Int<MOD>(*this);}
//入れ子にしたい
// friend constexpr istream& operator>>(istream& is, mint& x) noexcept {
// int X;
// is >> X;
// x = X;
// return is;
// }
// friend constexpr ostream& operator<<(ostream& os, mint& x) {
// os << x.val();
// return os;
// }
};
const int MOD_VAL = 1e9+7;
// const int MOD_VAL = 998244353;
using mint = Modular_Int<MOD_VAL>;
istream& operator>>(istream& is, mint& x) {
int X;
is >> X;
x = X;
return is;
}
ostream& operator<<(ostream& os, mint& x) {
os << x.val();
return os;
}
// istream& operator<<(istream& is, mint &a) {
// int x;
// is >> x;
// a = mint(x);
// return is;
// }
// ostream& operator<<(ostream& os, mint a) {
// os << a.val();
// return os;
// }
// vector<mint> f = {1}, rf = {1};
// void factor_init(int n) {
// ++n;
// f.resize(n, 0);
// rf.resize(n, 0);
// f[0] = 1;
// repi(i, 1, n) f[i] = (f[i - 1] * i);
//// repi(i, 0, n) rf[n-1] *= i;
//// for(int i = n-1; i > 0; --i) rf[i-1] = rf[i] * i;
// repi(i, 0, n) rf[i] = f[i].inv();
// }
// mint P(int n, int k) {
// assert(n>=k);
// while(n > f.size()-1) {
// f.push_back(f.back() * f.size());
// rf.push_back(f.back().inv());
// }
// return f[n] * f[n-k];
// }
// mint C(int n, int k) {
// assert(n>=k);
// while(n > f.size()-1) {
// f.push_back(f.back() * f.size());
// rf.push_back(f.back().inv());
// }
// return f[n]*rf[n-k]*rf[k];
// }
// mint H(int n, int k) {
// assert(n>=1);
// return C(n+k-1, k);
// }
// mint Cat(int n) {
// return C(2*n, n)-C(2*n, n-1);
// }
void solve() {
const int TMP_MOD = 1e9+6;
int n, k;
cin >> n >> k;
vi factor = factorizer.factorize(n);
unordered_map<int, int> now;
for(auto e : factor) ++now[e];
while(now.size() > 1) {
unordered_map<int, int> nxt;
for(auto e : now) {
for(auto f : factorizer.factorize(e.first+1)) {
(nxt[f] += e.second) %= TMP_MOD;
}
}
now.swap(nxt);
--k;
if(k == 0) {
mint ans = 1;
for(auto e : now) {
ans *= mint(e.first).pow(e.second);
}
cout << ans.val() << endl;
return;
}
}
if(now.begin()->first == 3) {
unordered_map<int, int> nxt;
for(auto e : now) {
for(auto f : factorizer.factorize(e.first+1)) {
(nxt[f] += e.second) %= TMP_MOD;
}
}
now.swap(nxt);
--k;
if(k == 0) {
mint ans = 1;
for(auto e : now) {
ans *= mint(e.first).pow(e.second);
}
cout << ans.val() << endl;
return;
}
}
int power = k/2;
k %= 2;
int mul = 2;
while(power > 0) {
if(power&1) (now.begin()->second *= mul) %= TMP_MOD;
mul = (mul * mul) % TMP_MOD;
power >>= 1;
}
if(k == 1) {
unordered_map<int, int> nxt;
for(auto e : now) {
for(auto f : factorizer.factorize(e.first+1)) {
(nxt[f] += e.second) %= TMP_MOD;
}
}
now.swap(nxt);
--k;
}
if(k == 0) {
mint ans = 1;
for(auto e : now) {
ans *= mint(e.first).pow(e.second);
}
cout << ans.val() << endl;
return;
}
}
signed main() {
cin.tie(nullptr);
ios::sync_with_stdio(false);
solve();
return 0;
}
k1suxu