結果

問題 No.1320 Two Type Min Cost Cycle
ユーザー ecotteaecottea
提出日時 2023-07-02 03:39:00
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 669 ms / 2,000 ms
コード長 10,485 bytes
コンパイル時間 4,801 ms
コンパイル使用メモリ 283,472 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-08 14:08:39
合計ジャッジ時間 10,704 ms
ジャッジサーバーID
(参考情報)
judge2 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 2 ms
5,376 KB
testcase_04 AC 1 ms
5,376 KB
testcase_05 AC 2 ms
5,376 KB
testcase_06 AC 2 ms
5,376 KB
testcase_07 AC 4 ms
5,376 KB
testcase_08 AC 4 ms
5,376 KB
testcase_09 AC 582 ms
5,376 KB
testcase_10 AC 4 ms
5,376 KB
testcase_11 AC 336 ms
5,376 KB
testcase_12 AC 35 ms
5,376 KB
testcase_13 AC 141 ms
5,376 KB
testcase_14 AC 4 ms
5,376 KB
testcase_15 AC 4 ms
5,376 KB
testcase_16 AC 14 ms
5,376 KB
testcase_17 AC 3 ms
5,376 KB
testcase_18 AC 3 ms
5,376 KB
testcase_19 AC 47 ms
5,376 KB
testcase_20 AC 3 ms
5,376 KB
testcase_21 AC 360 ms
5,376 KB
testcase_22 AC 2 ms
5,376 KB
testcase_23 AC 2 ms
5,376 KB
testcase_24 AC 2 ms
5,376 KB
testcase_25 AC 2 ms
5,376 KB
testcase_26 AC 2 ms
5,376 KB
testcase_27 AC 2 ms
5,376 KB
testcase_28 AC 4 ms
5,376 KB
testcase_29 AC 63 ms
5,376 KB
testcase_30 AC 2 ms
5,376 KB
testcase_31 AC 12 ms
5,376 KB
testcase_32 AC 2 ms
5,376 KB
testcase_33 AC 223 ms
5,376 KB
testcase_34 AC 140 ms
5,376 KB
testcase_35 AC 3 ms
5,376 KB
testcase_36 AC 5 ms
5,376 KB
testcase_37 AC 3 ms
5,376 KB
testcase_38 AC 9 ms
5,376 KB
testcase_39 AC 4 ms
5,376 KB
testcase_40 AC 2 ms
5,376 KB
testcase_41 AC 2 ms
5,376 KB
testcase_42 AC 2 ms
5,376 KB
testcase_43 AC 4 ms
5,376 KB
testcase_44 AC 3 ms
5,376 KB
testcase_45 AC 669 ms
5,376 KB
testcase_46 AC 9 ms
5,376 KB
testcase_47 AC 196 ms
5,376 KB
testcase_48 AC 46 ms
5,376 KB
testcase_49 AC 7 ms
5,376 KB
testcase_50 AC 2 ms
5,376 KB
testcase_51 AC 2 ms
5,376 KB
testcase_52 AC 42 ms
5,376 KB
testcase_53 AC 19 ms
5,376 KB
testcase_54 AC 104 ms
5,376 KB
testcase_55 AC 104 ms
5,376 KB
testcase_56 AC 101 ms
5,376 KB
testcase_57 AC 487 ms
5,376 KB
testcase_58 AC 509 ms
5,376 KB
testcase_59 AC 498 ms
5,376 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【重み付きグラフの辺】
/*
* to : 行き先の頂点番号
* cost : 辺の重み
*/
struct WEdge {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	int to; // 行き先の頂点番号
	ll cost; // 辺の重み

	WEdge() : to(-1), cost(-INFL) {}
	WEdge(int to, ll cost) : to(to), cost(cost) {}

	// プレーングラフで呼ばれたとき用
	operator int() const { return to; }

#ifdef _MSC_VER
	friend ostream& operator<<(ostream& os, const WEdge& e) {
		os << '(' << e.to << ',' << e.cost << ')';
		return os;
	}
#endif
};


//【重み付きグラフ】
/*
* WGraph g
* g[v] : 頂点 v から出る辺を並べたリスト
*
* verify : https://judge.yosupo.jp/problem/shortest_path
*/
using WGraph = vector<vector<WEdge>>;


//【重み付きグラフの入力】O(n + m)
/*
* (始点, 終点, 重み) の組からなる入力を受け取り,n 頂点 m 辺の重み付きグラフを構築して返す.
*
* n : グラフの頂点の数
* m : グラフの辺の数(省略すれば n-1)
* undirected : 無向グラフか(省略すれば true)
* one_indexed : 入力が 1-indexed か(省略すれば true)
*/
WGraph read_WGraph(int n, int m = -1, bool undirected = true, bool one_indexed = true) {
	// verify : https://judge.yosupo.jp/problem/shortest_path

	WGraph g(n);
	if (m == -1) m = n - 1;

	rep(i, m) {
		int a, b; ll c;
		cin >> a >> b >> c;

		if (one_indexed) { --a; --b; }

		g[a].push_back({ b, c });
		if (undirected) g[b].push_back({ a, c });
	}

	return g;
}


//【最短サイクル(有向,重み付き)】O(n + m log n)
/*
* 非負の重み付き有向グラフ g の頂点 st を通る最短サイクルの長さを返す.
* 存在しないなら INFL を返す.必要なら path に最短サイクル上の頂点の列を格納する.
*
*(ダイクストラ法)
*/
ll minimum_cost_directed_cycle(const WGraph& g, int st, vi* path = nullptr) {
	int n = sz(g);

	vl cost(n, INFL); // st からの最短距離を保持するテーブル
	vi parent(n); // 1 つ手前の頂点を記録しておくテーブル(復元用)

	// 組 (スタートからの距離, 頂点番号, 直前の頂点) を入れる優先度付きキューを用意する.
	// スタートからの距離がより小さいものを優先的に取り出す.
	priority_queue_rev<tuple<ll, int, int>> que;
	repe(e, g[st]) {
		que.push({ e.cost, e.to, st });
	}

	while (!que.empty()) {
		ll c; int s, p;
		tie(c, s, p) = que.top(); que.pop();

		// もし既に最短距離が求まっているなら何もしない.
		if (c >= cost[s]) continue;

		// 最短距離の決定
		// 優先度付きキューで距離の小さい順に取り出しており,
		// かつコストが非負より三角不等式が成立するので最短の保証がある.
		cost[s] = c;
		parent[s] = p;

		// st に戻ってきたら終了
		if (s == st) break;

		// そこから移動できるノードについての情報をキューに追加する.
		repe(e, g[s]) {
			que.push({ c + e.cost, e.to, s });
		}
	}

	// st から st まで到達不能の場合
	ll d = cost[st];
	if (d == INFL) return INFL;

	// 必要なら経路復元を行う.
	if (path != nullptr) {
		path->clear();

		int t = st;
		do {
			path->push_back(t);
			t = parent[t];
		} while (t != st);

		path->push_back(st);
		reverse(all(*path));
	}

	return d;
}


//【最短単純サイクル(無向,重み付き)】O(n + m log n)
/*
* 非負の重み付き無向グラフ g の頂点 ST を通る最短単純サイクルの長さを返す(なければ INFL)
*/
ll minimum_cost_cycle(const WGraph& g, int ST) {
	// verify : https://atcoder.jp/contests/abc022/tasks/abc022_c

	//【方法】
	// g の根を ST とする最短路木を T とする.
	// g に頂点 ST を通る単純サイクル C が存在するならば,
	// C は T の辺を 2 本以上と,V - T の辺をちょうど 1 本含む(らしい).
	// よって e∈E を決め打ち全探索すれば良い.

	int n = sz(g);

	// dist[s] : ST から s への最短距離
	vl dist(n, INFL);

	// p[s] : ST から s への最短経路において,ST の次に通る頂点
	vi p(n, -1);

	// 組 (ST からの距離, 始点, 終点, 辺のコスト) を入れる優先度付きキュー
	priority_queue_rev<tuple<ll, int, int, ll>> q;
	q.push({ 0, -1, ST, 0 });

	ll res = INFL;

	while (!q.empty()) {
		// d : ST から t までの距離(直前に通った辺が s→t でコストは c)
		auto [d, s, t, c] = q.top(); q.pop();

		// 距離が d 以下であることが既に確定しているなら,
		// 辺 s→t は最短路木に含まれない辺なので,それを含む単純閉路長で更新する.
		if (dist[t] <= d) {
			// ST の次に通る頂点が異なるなら合わせて単純閉路になる.
			if (s != -1 && p[s] != p[t] && t != ST) {
				chmin(res, dist[s] + dist[t] + c);
			}
			continue;
		}

		// 最短距離を確定する.
		dist[t] = d;

		// ST の次に通る頂点を記録する.
		if (s == -1) p[t] = -1;
		else if (s == ST) p[t] = t;
		else p[t] = p[s];

		// 先を探索する.
		repe(e, g[t]) q.push({ d + e.cost, t, e.to, e.cost });
	}

	return res;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int t;
	cin >> t;

	int n, m;
	cin >> n >> m;

	auto g = read_WGraph(n, m, t == 0);

	ll res = INFL;
	rep(s, n) {
		if (t == 0) chmin(res, minimum_cost_cycle(g, s));
		else chmin(res, minimum_cost_directed_cycle(g, s));
	}

	if (res == INFL) res = -1;

	cout << res << endl;
}
0