結果
問題 | No.2377 SUM AND XOR on Tree |
ユーザー |
|
提出日時 | 2023-07-07 21:39:45 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 578 ms / 4,000 ms |
コード長 | 22,400 bytes |
コンパイル時間 | 2,843 ms |
コンパイル使用メモリ | 279,436 KB |
最終ジャッジ日時 | 2025-02-15 06:58:57 |
ジャッジサーバーID (参考情報) |
judge1 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 2 |
other | AC * 33 |
ソースコード
/*** date : 2023-07-07 21:39:39* author : Nyaan*/#define NDEBUGusing namespace std;// intrinstic#include <immintrin.h>#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cctype>#include <cfenv>#include <cfloat>#include <chrono>#include <cinttypes>#include <climits>#include <cmath>#include <complex>#include <cstdarg>#include <cstddef>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <deque>#include <fstream>#include <functional>#include <initializer_list>#include <iomanip>#include <ios>#include <iostream>#include <istream>#include <iterator>#include <limits>#include <list>#include <map>#include <memory>#include <new>#include <numeric>#include <ostream>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <streambuf>#include <string>#include <tuple>#include <type_traits>#include <typeinfo>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>// utilitynamespace Nyaan {using ll = long long;using i64 = long long;using u64 = unsigned long long;using i128 = __int128_t;using u128 = __uint128_t;template <typename T>using V = vector<T>;template <typename T>using VV = vector<vector<T>>;using vi = vector<int>;using vl = vector<long long>;using vd = V<double>;using vs = V<string>;using vvi = vector<vector<int>>;using vvl = vector<vector<long long>>;template <typename T, typename U>struct P : pair<T, U> {template <typename... Args>P(Args... args) : pair<T, U>(args...) {}using pair<T, U>::first;using pair<T, U>::second;P &operator+=(const P &r) {first += r.first;second += r.second;return *this;}P &operator-=(const P &r) {first -= r.first;second -= r.second;return *this;}P &operator*=(const P &r) {first *= r.first;second *= r.second;return *this;}template <typename S>P &operator*=(const S &r) {first *= r, second *= r;return *this;}P operator+(const P &r) const { return P(*this) += r; }P operator-(const P &r) const { return P(*this) -= r; }P operator*(const P &r) const { return P(*this) *= r; }template <typename S>P operator*(const S &r) const {return P(*this) *= r;}P operator-() const { return P{-first, -second}; }};using pl = P<ll, ll>;using pi = P<int, int>;using vp = V<pl>;constexpr int inf = 1001001001;constexpr long long infLL = 4004004004004004004LL;template <typename T>int sz(const T &t) {return t.size();}template <typename T, typename U>inline bool amin(T &x, U y) {return (y < x) ? (x = y, true) : false;}template <typename T, typename U>inline bool amax(T &x, U y) {return (x < y) ? (x = y, true) : false;}template <typename T>inline T Max(const vector<T> &v) {return *max_element(begin(v), end(v));}template <typename T>inline T Min(const vector<T> &v) {return *min_element(begin(v), end(v));}template <typename T>inline long long Sum(const vector<T> &v) {return accumulate(begin(v), end(v), 0LL);}template <typename T>int lb(const vector<T> &v, const T &a) {return lower_bound(begin(v), end(v), a) - begin(v);}template <typename T>int ub(const vector<T> &v, const T &a) {return upper_bound(begin(v), end(v), a) - begin(v);}constexpr long long TEN(int n) {long long ret = 1, x = 10;for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);return ret;}template <typename T, typename U>pair<T, U> mkp(const T &t, const U &u) {return make_pair(t, u);}template <typename T>vector<T> mkrui(const vector<T> &v, bool rev = false) {vector<T> ret(v.size() + 1);if (rev) {for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];} else {for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];}return ret;};template <typename T>vector<T> mkuni(const vector<T> &v) {vector<T> ret(v);sort(ret.begin(), ret.end());ret.erase(unique(ret.begin(), ret.end()), ret.end());return ret;}template <typename F>vector<int> mkord(int N, F f) {vector<int> ord(N);iota(begin(ord), end(ord), 0);sort(begin(ord), end(ord), f);return ord;}template <typename T>vector<int> mkinv(vector<T> &v) {int max_val = *max_element(begin(v), end(v));vector<int> inv(max_val + 1, -1);for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;return inv;}vector<int> mkiota(int n) {vector<int> ret(n);iota(begin(ret), end(ret), 0);return ret;}template <typename T>T mkrev(const T &v) {T w{v};reverse(begin(w), end(w));return w;}template <typename T>bool nxp(vector<T> &v) {return next_permutation(begin(v), end(v));}// i 要素目 : [0, a[i])vector<vector<int>> product(const vector<int> &a) {vector<vector<int>> ret;vector<int> v;auto dfs = [&](auto rc, int i) -> void {if (i == (int)a.size()) {ret.push_back(v);return;}for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();};dfs(dfs, 0);return ret;}template <typename T>using minpq = priority_queue<T, vector<T>, greater<T>>;} // namespace Nyaan// bit operationnamespace Nyaan {__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {return _mm_popcnt_u64(a);}inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }template <typename T>inline int gbit(const T &a, int i) {return (a >> i) & 1;}template <typename T>inline void sbit(T &a, int i, bool b) {if (gbit(a, i) != b) a ^= T(1) << i;}constexpr long long PW(int n) { return 1LL << n; }constexpr long long MSK(int n) { return (1LL << n) - 1; }} // namespace Nyaan// inoutnamespace Nyaan {template <typename T, typename U>ostream &operator<<(ostream &os, const pair<T, U> &p) {os << p.first << " " << p.second;return os;}template <typename T, typename U>istream &operator>>(istream &is, pair<T, U> &p) {is >> p.first >> p.second;return is;}template <typename T>ostream &operator<<(ostream &os, const vector<T> &v) {int s = (int)v.size();for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];return os;}template <typename T>istream &operator>>(istream &is, vector<T> &v) {for (auto &x : v) is >> x;return is;}istream &operator>>(istream &is, __int128_t &x) {string S;is >> S;x = 0;int flag = 0;for (auto &c : S) {if (c == '-') {flag = true;continue;}x *= 10;x += c - '0';}if (flag) x = -x;return is;}istream &operator>>(istream &is, __uint128_t &x) {string S;is >> S;x = 0;for (auto &c : S) {x *= 10;x += c - '0';}return is;}ostream &operator<<(ostream &os, __int128_t x) {if (x == 0) return os << 0;if (x < 0) os << '-', x = -x;string S;while (x) S.push_back('0' + x % 10), x /= 10;reverse(begin(S), end(S));return os << S;}ostream &operator<<(ostream &os, __uint128_t x) {if (x == 0) return os << 0;string S;while (x) S.push_back('0' + x % 10), x /= 10;reverse(begin(S), end(S));return os << S;}void in() {}template <typename T, class... U>void in(T &t, U &...u) {cin >> t;in(u...);}void out() { cout << "\n"; }template <typename T, class... U, char sep = ' '>void out(const T &t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;out(u...);}struct IoSetupNya {IoSetupNya() {cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(15);cerr << fixed << setprecision(7);}} iosetupnya;} // namespace Nyaan// debug#ifdef NyaanDebug#define trc(...) (void(0))#else#define trc(...) (void(0))#endif#ifdef NyaanLocal#define trc2(...) (void(0))#else#define trc2(...) (void(0))#endif// macro#define each(x, v) for (auto&& x : v)#define each2(x, y, v) for (auto&& [x, y] : v)#define all(v) (v).begin(), (v).end()#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)#define reg(i, a, b) for (long long i = (a); i < (b); i++)#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)#define fi first#define se second#define ini(...) \int __VA_ARGS__; \in(__VA_ARGS__)#define inl(...) \long long __VA_ARGS__; \in(__VA_ARGS__)#define ins(...) \string __VA_ARGS__; \in(__VA_ARGS__)#define in2(s, t) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i]); \}#define in3(s, t, u) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i]); \}#define in4(s, t, u, v) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i], v[i]); \}#define die(...) \do { \Nyaan::out(__VA_ARGS__); \return; \} while (0)namespace Nyaan {void solve();}int main() { Nyaan::solve(); }//template <typename T>struct edge {int src, to;T cost;edge(int _to, T _cost) : src(-1), to(_to), cost(_cost) {}edge(int _src, int _to, T _cost) : src(_src), to(_to), cost(_cost) {}edge &operator=(const int &x) {to = x;return *this;}operator int() const { return to; }};template <typename T>using Edges = vector<edge<T>>;template <typename T>using WeightedGraph = vector<Edges<T>>;using UnweightedGraph = vector<vector<int>>;// Input of (Unweighted) GraphUnweightedGraph graph(int N, int M = -1, bool is_directed = false,bool is_1origin = true) {UnweightedGraph g(N);if (M == -1) M = N - 1;for (int _ = 0; _ < M; _++) {int x, y;cin >> x >> y;if (is_1origin) x--, y--;g[x].push_back(y);if (!is_directed) g[y].push_back(x);}return g;}// Input of Weighted Graphtemplate <typename T>WeightedGraph<T> wgraph(int N, int M = -1, bool is_directed = false,bool is_1origin = true) {WeightedGraph<T> g(N);if (M == -1) M = N - 1;for (int _ = 0; _ < M; _++) {int x, y;cin >> x >> y;T c;cin >> c;if (is_1origin) x--, y--;g[x].emplace_back(x, y, c);if (!is_directed) g[y].emplace_back(y, x, c);}return g;}// Input of Edgestemplate <typename T>Edges<T> esgraph(int N, int M, int is_weighted = true, bool is_1origin = true) {Edges<T> es;for (int _ = 0; _ < M; _++) {int x, y;cin >> x >> y;T c;if (is_weighted)cin >> c;elsec = 1;if (is_1origin) x--, y--;es.emplace_back(x, y, c);}return es;}// Input of Adjacency Matrixtemplate <typename T>vector<vector<T>> adjgraph(int N, int M, T INF, int is_weighted = true,bool is_directed = false, bool is_1origin = true) {vector<vector<T>> d(N, vector<T>(N, INF));for (int _ = 0; _ < M; _++) {int x, y;cin >> x >> y;T c;if (is_weighted)cin >> c;elsec = 1;if (is_1origin) x--, y--;d[x][y] = c;if (!is_directed) d[y][x] = c;}return d;}/*** @brief グラフテンプレート* @docs docs/graph/graph-template.md*/template <typename G>struct HeavyLightDecomposition {private:void dfs_sz(int cur) {size[cur] = 1;for (auto& dst : g[cur]) {if (dst == par[cur]) {if (g[cur].size() >= 2 && int(dst) == int(g[cur][0]))swap(g[cur][0], g[cur][1]);elsecontinue;}depth[dst] = depth[cur] + 1;par[dst] = cur;dfs_sz(dst);size[cur] += size[dst];if (size[dst] > size[g[cur][0]]) {swap(dst, g[cur][0]);}}}void dfs_hld(int cur) {down[cur] = id++;for (auto dst : g[cur]) {if (dst == par[cur]) continue;nxt[dst] = (int(dst) == int(g[cur][0]) ? nxt[cur] : int(dst));dfs_hld(dst);}up[cur] = id;}// [u, v)vector<pair<int, int>> ascend(int u, int v) const {vector<pair<int, int>> res;while (nxt[u] != nxt[v]) {res.emplace_back(down[u], down[nxt[u]]);u = par[nxt[u]];}if (u != v) res.emplace_back(down[u], down[v] + 1);return res;}// (u, v]vector<pair<int, int>> descend(int u, int v) const {if (u == v) return {};if (nxt[u] == nxt[v]) return {{down[u] + 1, down[v]}};auto res = descend(u, par[nxt[v]]);res.emplace_back(down[nxt[v]], down[v]);return res;}public:G& g;int id;vector<int> size, depth, down, up, nxt, par;HeavyLightDecomposition(G& _g, int root = 0): g(_g),id(0),size(g.size(), 0),depth(g.size(), 0),down(g.size(), -1),up(g.size(), -1),nxt(g.size(), root),par(g.size(), root) {dfs_sz(root);dfs_hld(root);}void build(int root) {dfs_sz(root);dfs_hld(root);}pair<int, int> idx(int i) const { return make_pair(down[i], up[i]); }template <typename F>void path_query(int u, int v, bool vertex, const F& f) {int l = lca(u, v);for (auto&& [a, b] : ascend(u, l)) {int s = a + 1, t = b;s > t ? f(t, s) : f(s, t);}if (vertex) f(down[l], down[l] + 1);for (auto&& [a, b] : descend(l, v)) {int s = a, t = b + 1;s > t ? f(t, s) : f(s, t);}}template <typename F>void path_noncommutative_query(int u, int v, bool vertex, const F& f) {int l = lca(u, v);for (auto&& [a, b] : ascend(u, l)) f(a + 1, b);if (vertex) f(down[l], down[l] + 1);for (auto&& [a, b] : descend(l, v)) f(a, b + 1);}template <typename F>void subtree_query(int u, bool vertex, const F& f) {f(down[u] + int(!vertex), up[u]);}int lca(int a, int b) {while (nxt[a] != nxt[b]) {if (down[a] < down[b]) swap(a, b);a = par[nxt[a]];}return depth[a] < depth[b] ? a : b;}int dist(int a, int b) { return depth[a] + depth[b] - depth[lca(a, b)] * 2; }};/*** @brief Heavy Light Decomposition(重軽分解)* @docs docs/tree/heavy-light-decomposition.md*///// 一般のグラフのstからの距離!!!!// unvisited nodes : d = -1vector<int> Depth(const UnweightedGraph &g, int start = 0) {int n = g.size();vector<int> ds(n, -1);ds[start] = 0;queue<int> q;q.push(start);while (!q.empty()) {int c = q.front();q.pop();int dc = ds[c];for (auto &d : g[c]) {if (ds[d] == -1) {ds[d] = dc + 1;q.push(d);}}}return ds;}// Depth of Rooted Weighted Tree// unvisited nodes : d = -1template <typename T>vector<T> Depth(const WeightedGraph<T> &g, int start = 0) {vector<T> d(g.size(), -1);auto dfs = [&](auto rec, int cur, T val, int par = -1) -> void {d[cur] = val;for (auto &dst : g[cur]) {if (dst == par) continue;rec(rec, dst, val + dst.cost, cur);}};dfs(dfs, start, 0);return d;}// Diameter of Tree// return value : { {u, v}, length }pair<pair<int, int>, int> Diameter(const UnweightedGraph &g) {auto d = Depth(g, 0);int u = max_element(begin(d), end(d)) - begin(d);d = Depth(g, u);int v = max_element(begin(d), end(d)) - begin(d);return make_pair(make_pair(u, v), d[v]);}// Diameter of Weighted Tree// return value : { {u, v}, length }template <typename T>pair<pair<int, int>, T> Diameter(const WeightedGraph<T> &g) {auto d = Depth(g, 0);int u = max_element(begin(d), end(d)) - begin(d);d = Depth(g, u);int v = max_element(begin(d), end(d)) - begin(d);return make_pair(make_pair(u, v), d[v]);}// nodes on the path u-v ( O(N) )template <typename G>vector<int> Path(G &g, int u, int v) {vector<int> ret;int end = 0;auto dfs = [&](auto rec, int cur, int par = -1) -> void {ret.push_back(cur);if (cur == v) {end = 1;return;}for (int dst : g[cur]) {if (dst == par) continue;rec(rec, dst, cur);if (end) return;}if (end) return;ret.pop_back();};dfs(dfs, u);return ret;}/*** @brief グラフユーティリティ* @docs docs/graph/graph-utility.md*///template <uint32_t mod>struct LazyMontgomeryModInt {using mint = LazyMontgomeryModInt;using i32 = int32_t;using u32 = uint32_t;using u64 = uint64_t;static constexpr u32 get_r() {u32 ret = mod;for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;return ret;}static constexpr u32 r = get_r();static constexpr u32 n2 = -u64(mod) % mod;static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");static_assert(r * mod == 1, "this code has bugs.");u32 a;constexpr LazyMontgomeryModInt() : a(0) {}constexpr LazyMontgomeryModInt(const int64_t &b): a(reduce(u64(b % mod + mod) * n2)){};static constexpr u32 reduce(const u64 &b) {return (b + u64(u32(b) * u32(-r)) * mod) >> 32;}constexpr mint &operator+=(const mint &b) {if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}constexpr mint &operator-=(const mint &b) {if (i32(a -= b.a) < 0) a += 2 * mod;return *this;}constexpr mint &operator*=(const mint &b) {a = reduce(u64(a) * b.a);return *this;}constexpr mint &operator/=(const mint &b) {*this *= b.inverse();return *this;}constexpr mint operator+(const mint &b) const { return mint(*this) += b; }constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }constexpr bool operator==(const mint &b) const {return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}constexpr bool operator!=(const mint &b) const {return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}constexpr mint operator-() const { return mint() - mint(*this); }constexpr mint operator+() const { return mint(*this); }constexpr mint pow(u64 n) const {mint ret(1), mul(*this);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}constexpr mint inverse() const {int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;while (y > 0) {t = x / y;x -= t * y, u -= t * v;tmp = x, x = y, y = tmp;tmp = u, u = v, v = tmp;}return mint{u};}friend ostream &operator<<(ostream &os, const mint &b) {return os << b.get();}friend istream &operator>>(istream &is, mint &b) {int64_t t;is >> t;b = LazyMontgomeryModInt<mod>(t);return (is);}constexpr u32 get() const {u32 ret = reduce(a);return ret >= mod ? ret - mod : ret;}static constexpr u32 get_mod() { return mod; }};using namespace std;// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」// を入れると倍速くらいになる// mod を超えて前計算して 0 割りを踏むバグは対策済みtemplate <typename T>struct Binomial {vector<T> f, g, h;Binomial(int MAX = 0) {assert(T::get_mod() != 0 && "Binomial<mint>()");f.resize(1, T{1});g.resize(1, T{1});h.resize(1, T{1});if (MAX > 0) extend(MAX + 1);}void extend(int m = -1) {int n = f.size();if (m == -1) m = n * 2;m = min<int>(m, T::get_mod());if (n >= m) return;f.resize(m);g.resize(m);h.resize(m);for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);g[m - 1] = f[m - 1].inverse();h[m - 1] = g[m - 1] * f[m - 2];for (int i = m - 2; i >= n; i--) {g[i] = g[i + 1] * T(i + 1);h[i] = g[i] * f[i - 1];}}T fac(int i) {if (i < 0) return T(0);while (i >= (int)f.size()) extend();return f[i];}T finv(int i) {if (i < 0) return T(0);while (i >= (int)g.size()) extend();return g[i];}T inv(int i) {if (i < 0) return -inv(-i);while (i >= (int)h.size()) extend();return h[i];}T C(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);return fac(n) * finv(n - r) * finv(r);}inline T operator()(int n, int r) { return C(n, r); }template <typename I>T multinomial(const vector<I>& r) {static_assert(is_integral<I>::value == true);int n = 0;for (auto& x : r) {if (x < 0) return T(0);n += x;}T res = fac(n);for (auto& x : r) res *= finv(x);return res;}template <typename I>T operator()(const vector<I>& r) {return multinomial(r);}T C_naive(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);T ret = T(1);r = min(r, n - r);for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);return ret;}T P(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);return fac(n) * finv(n - r);}// [x^r] 1 / (1-x)^nT H(int n, int r) {if (n < 0 || r < 0) return T(0);return r == 0 ? 1 : C(n + r - 1, r);}};//using namespace Nyaan;using mint = LazyMontgomeryModInt<998244353>;// using mint = LazyMontgomeryModInt<1000000007>;using vm = vector<mint>;using vvm = vector<vm>;Binomial<mint> C;using namespace Nyaan;void q() {inl(N);auto g = graph(N);vl A(N);in(A);HeavyLightDecomposition hld{g};mint ans = 0;rep(b, 30) {vl B(N);rep(i, N) B[i] = gbit(A[i], b);auto dfs = [&](auto rc, int c, int p) -> vm {vm dp(2);dp[B[c]] = 1;each(d, g[c]) {if (d == p) continue;vm ch = rc(rc, d, c);vm nx(2);rep(i, 2) nx[i] += dp[i] * ch[1];rep(i, 2) rep(j, 2) nx[i ^ j] += dp[i] * ch[j];dp = nx;}trc(c, dp);return dp;};auto dp = dfs(dfs, 0, -1);ans += dp[1] * PW(b);}out(ans);}void Nyaan::solve() {int t = 1;// in(t);while (t--) q();}