結果

問題 No.2382 Amidakuji M
ユーザー ecotteaecottea
提出日時 2023-07-14 21:49:41
言語 C++17
(gcc 12.3.0 + boost 1.83.0)
結果
WA  
実行時間 -
コード長 8,678 bytes
コンパイル時間 4,485 ms
コンパイル使用メモリ 268,168 KB
実行使用メモリ 6,400 KB
最終ジャッジ日時 2024-09-16 06:45:03
合計ジャッジ時間 5,770 ms
ジャッジサーバーID
(参考情報)
judge3 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,376 KB
testcase_02 AC 2 ms
5,376 KB
testcase_03 AC 22 ms
5,376 KB
testcase_04 WA -
testcase_05 WA -
testcase_06 AC 23 ms
5,376 KB
testcase_07 WA -
testcase_08 AC 3 ms
5,376 KB
testcase_09 WA -
testcase_10 WA -
testcase_11 WA -
testcase_12 WA -
testcase_13 AC 2 ms
5,376 KB
testcase_14 AC 2 ms
5,376 KB
testcase_15 AC 2 ms
5,376 KB
testcase_16 AC 2 ms
5,376 KB
testcase_17 AC 2 ms
5,376 KB
testcase_18 AC 2 ms
5,376 KB
testcase_19 AC 51 ms
6,272 KB
testcase_20 AC 51 ms
6,400 KB
testcase_21 AC 51 ms
6,400 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#ifndef HIDDEN_IN_VS // 折りたたみ用

// 警告の抑制
#define _CRT_SECURE_NO_WARNINGS

// ライブラリの読み込み
#include <bits/stdc++.h>
using namespace std;

// 型名の短縮
using ll = long long; // -2^63 ~ 2^63 = 9 * 10^18(int は -2^31 ~ 2^31 = 2 * 10^9)
using pii = pair<int, int>;	using pll = pair<ll, ll>;	using pil = pair<int, ll>;	using pli = pair<ll, int>;
using vi = vector<int>;		using vvi = vector<vi>;		using vvvi = vector<vvi>;	using vvvvi = vector<vvvi>;
using vl = vector<ll>;		using vvl = vector<vl>;		using vvvl = vector<vvl>;	using vvvvl = vector<vvvl>;
using vb = vector<bool>;	using vvb = vector<vb>;		using vvvb = vector<vvb>;
using vc = vector<char>;	using vvc = vector<vc>;		using vvvc = vector<vvc>;
using vd = vector<double>;	using vvd = vector<vd>;		using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;

// 定数の定義
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4 近傍(下,右,上,左)
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;

// 入出力高速化
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;

// 汎用マクロの定義
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define YES(b) {cout << ((b) ? "YES\n" : "NO\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 から n-1 まで昇順
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s から t まで昇順
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s から t まで降順
#define repe(v, a) for(const auto& v : (a)) // a の全要素(変更不可能)
#define repea(v, a) for(auto& v : (a)) // a の全要素(変更可能)
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d ビット全探索(昇順)
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a の順列全て(昇順)
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // 非負mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} // 重複除去
#define EXIT(a) {cout << (a) << endl; exit(0);} // 強制終了
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) // 半開矩形内判定

// 汎用関数の定義
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // 最大値を更新(更新されたら true を返す)
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // 最小値を更新(更新されたら true を返す)
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }

// 演算子オーバーロード
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }

#endif // 折りたたみ用


#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;

#ifdef _MSC_VER
#include "localACL.hpp"
#endif

//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);

namespace atcoder {
	inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
	inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif


#ifdef _MSC_VER // 手元環境(Visual Studio)
#include "local.hpp"
#else // 提出用(gcc)
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif


//【転倒数】O(n log n)
/*
* a[0..n) の転倒数を返す.
*/
template <class T>
ll inversion_number(const vector<T>& a) {
	// verify : https://atcoder.jp/contests/arc075/tasks/arc075_c

	int n = sz(a);

	// 値 a[i] と位置 i を組にしソートする.
	vector<pair<T, int>> ai(n);
	rep(i, n) ai[i] = { a[i], i };
	sort(all(ai));

	ll res = 0;

	// ft[i] : いままでに位置 i の要素が現れたか
	fenwick_tree<int> ft(n);

	// 値について昇順に見ていく.
	rep(j, n) {
		// pos : 昇順で j 番目の値の位置
		int pos = ai[j].second;

		// pos より右に j 未満の要素が今までに何個あったかを加算する.
		res += ft.sum(pos + 1, n);

		// 位置 pos の要素の出現を記録する.
		ft.add(pos, 1);
	}

	return res;
}


//【切り上げ(余り指定)】O(1)
/*
* 与えられた x に対し,x 以上の y で y ≡ k (mod m) を満たす最小のものを返す.
*/
template <class T>
T ceil_mod(T x, T m, T k) {
	// verify : https://yukicoder.me/problems/9033

	//【方法】
	// k = 0 の場合は
	//		y = x + (-x mod m)
	// とすればよい.一般の k の場合は,k ずらして考えることにより
	//		y - k = (x - k) + (-(x - k) mod m)
	// を得る.

	Assert(m > 0);

	k = smod(k, m);
	x -= k;
	T y = x + smod(-x, m);

	return y + k;
}


//【拡張ユークリッドの互除法】O(log max(|a|, |b|))
/*
* g = gcd(a, b) > 0 を返しつつ,a x + b y = g の解 (x, y) を求める.
* |x| + |y| は最小になるよう選ばれる.
*/
ll extended_gcd(ll a, ll b, ll& x, ll& y) {
	// 参考:https://qiita.com/drken/items/b97ff231e43bce50199a
	// verify : https://onlinejudge.u-aizu.ac.jp/courses/library/6/NTL/all/NTL_1_E

	//【方法】
	// b = 0 の場合は,明らかに g = a で,(x, y) = (1, 0) が解である.
	// 
	// b != 0 の場合を考える.a を b で割り
	//		a = q b + r (0 <= r < b)
	// なる q, r を得ておく.これを元の式に代入すると
	//		(q b + r) x + b y = g
	//		⇔ b (q x + y) + r x = g
	// となるので,
	//		b X + r Y = g
	// の解 (X, Y) = (q x + y, x) を求めれば
	//		(x, y) = (Y, X - q Y)
	// として元の式の解が得られる.これを再帰的に繰り返す.

	// b = 0 になったら自明解を返す.
	if (b == 0) {
		// 最大公約数は正とする.
		x = (a > 0) ? 1 : -1;
		y = 0;
		return a * x;
	}

	// a を b で割った商 q と余り r を求めておく.
	ll q = a / b, r = a % b;

	// a, b を更新し解 X, Y を得る.
	ll X, Y;
	ll d = extended_gcd(b, r, X, Y);

	// X, Y から x, y を得る.
	x = Y;
	y = X - q * Y;

	return d;
}


//【一次不定方程式】O(log max(|a|, |b|))
/*
* a x + b y = c の特殊解 (x, y) を求める.
* 解があれば gcd(a, b) > 0,なければ -1 を返す.
*
* 利用:【拡張ユークリッドの互除法】
*/
ll bezout(ll a, ll b, ll c, ll& x, ll& y) {
	// verify : https://atcoder.jp/contests/arc091/tasks/arc091_d

	ll g = extended_gcd(a, b, x, y);

	if (c % g != 0) return -1;

	x *= c / g;
	y *= c / g;
	dump(x, y, g);

	// x を非負最小にしたければ,x = smod(x, b / g); y = (n - a * x) / b; とする.
	// y を非負最小にしたければ,y = smod(y, a / g); x = (n - b * y) / a; とする.
	// verify : https://atcoder.jp/contests/arc091/tasks/arc091_d

	x = smod(x, abs(b / g));

	return g;
}


int main() {
//	input_from_file("input.txt");
//	output_to_file("output.txt");

	int n; ll m;
	cin >> n >> m;

	vi p(n);
	cin >> p;
	--p;

	ll inv = inversion_number(p);
	dump(inv);

	ll x, y;
	ll g = bezout(2, -m, -inv, x, y);

	if (g == -1) EXIT(-1);

	cout << inv + 2 * x << endl;
}
0