結果

問題 No.1340 おーじ君をさがせ
ユーザー ecottea
提出日時 2023-07-21 03:26:37
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 78 ms / 2,000 ms
コード長 8,937 bytes
コンパイル時間 4,569 ms
コンパイル使用メモリ 260,200 KB
最終ジャッジ日時 2025-02-15 16:06:06
ジャッジサーバーID
(参考情報)
judge5 / judge4
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 59
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#ifndef HIDDEN_IN_VS //
//
#define _CRT_SECURE_NO_WARNINGS
//
#include <bits/stdc++.h>
using namespace std;
//
using ll = long long; // -2^63 2^63 = 9 * 10^18int -2^31 2^31 = 2 * 10^9
using pii = pair<int, int>; using pll = pair<ll, ll>; using pil = pair<int, ll>; using pli = pair<ll, int>;
using vi = vector<int>; using vvi = vector<vi>; using vvvi = vector<vvi>; using vvvvi = vector<vvvi>;
using vl = vector<ll>; using vvl = vector<vl>; using vvvl = vector<vvl>; using vvvvl = vector<vvvl>;
using vb = vector<bool>; using vvb = vector<vb>; using vvvb = vector<vvb>;
using vc = vector<char>; using vvc = vector<vc>; using vvvc = vector<vvc>;
using vd = vector<double>; using vvd = vector<vd>; using vvvd = vector<vvd>;
template <class T> using priority_queue_rev = priority_queue<T, vector<T>, greater<T>>;
using Graph = vvi;
//
const double PI = acos(-1);
const vi DX = { 1, 0, -1, 0 }; // 4
const vi DY = { 0, 1, 0, -1 };
int INF = 1001001001; ll INFL = 4004004003104004004LL; // (int)INFL = 1010931620;
double EPS = 1e-15;
//
struct fast_io { fast_io() { cin.tie(nullptr); ios::sync_with_stdio(false); cout << fixed << setprecision(18); } } fastIOtmp;
//
#define all(a) (a).begin(), (a).end()
#define sz(x) ((int)(x).size())
#define lbpos(a, x) (int)distance((a).begin(), std::lower_bound(all(a), x))
#define ubpos(a, x) (int)distance((a).begin(), std::upper_bound(all(a), x))
#define Yes(b) {cout << ((b) ? "Yes\n" : "No\n");}
#define rep(i, n) for(int i = 0, i##_len = int(n); i < i##_len; ++i) // 0 n-1
#define repi(i, s, t) for(int i = int(s), i##_end = int(t); i <= i##_end; ++i) // s t
#define repir(i, s, t) for(int i = int(s), i##_end = int(t); i >= i##_end; --i) // s t
#define repe(v, a) for(const auto& v : (a)) // a
#define repea(v, a) for(auto& v : (a)) // a
#define repb(set, d) for(int set = 0; set < (1 << int(d)); ++set) // d
#define repp(a) sort(all(a)); for(bool a##_perm = true; a##_perm; a##_perm = next_permutation(all(a))) // a
#define smod(n, m) ((((n) % (m)) + (m)) % (m)) // mod
#define uniq(a) {sort(all(a)); (a).erase(unique(all(a)), (a).end());} //
#define EXIT(a) {cout << (a) << endl; exit(0);} //
#define inQ(x, y, u, l, d, r) ((u) <= (x) && (l) <= (y) && (x) < (d) && (y) < (r)) //
//
template <class T> inline ll pow(T n, int k) { ll v = 1; rep(i, k) v *= n; return v; }
template <class T> inline bool chmax(T& M, const T& x) { if (M < x) { M = x; return true; } return false; } // true
    
template <class T> inline bool chmin(T& m, const T& x) { if (m > x) { m = x; return true; } return false; } // true
    
template <class T> inline T get(T set, int i) { return (set >> i) & T(1); }
//
template <class T, class U> inline istream& operator>>(istream& is, pair<T, U>& p) { is >> p.first >> p.second; return is; }
template <class T> inline istream& operator>>(istream& is, vector<T>& v) { repea(x, v) is >> x; return is; }
template <class T> inline vector<T>& operator--(vector<T>& v) { repea(x, v) --x; return v; }
template <class T> inline vector<T>& operator++(vector<T>& v) { repea(x, v) ++x; return v; }
#endif //
#if __has_include(<atcoder/all>)
#include <atcoder/all>
using namespace atcoder;
#ifdef _MSC_VER
#include "localACL.hpp"
#endif
//using mint = modint1000000007;
using mint = modint998244353;
//using mint = modint; // mint::set_mod(m);
namespace atcoder {
inline istream& operator>>(istream& is, mint& x) { ll x_; is >> x_; x = x_; return is; }
inline ostream& operator<<(ostream& os, const mint& x) { os << x.val(); return os; }
}
using vm = vector<mint>; using vvm = vector<vm>; using vvvm = vector<vvm>; using vvvvm = vector<vvvm>;
#endif
#ifdef _MSC_VER // Visual Studio
#include "local.hpp"
#else // gcc
inline int popcount(int n) { return __builtin_popcount(n); }
inline int popcount(ll n) { return __builtin_popcountll(n); }
inline int lsb(int n) { return n != 0 ? __builtin_ctz(n) : -1; }
inline int lsb(ll n) { return n != 0 ? __builtin_ctzll(n) : -1; }
inline int msb(int n) { return n != 0 ? (31 - __builtin_clz(n)) : -1; }
inline int msb(ll n) { return n != 0 ? (63 - __builtin_clzll(n)) : -1; }
#define gcd __gcd
#define dump(...)
#define dumpel(v)
#define dump_list(v)
#define dump_mat(v)
#define input_from_file(f)
#define output_to_file(f)
#define Assert(b) { if (!(b)) while (1) cout << "OLE"; }
#endif
//
/*
* Matrix<S, add, o, mul, e>(m, n) : O(m n)
* m×n
* <S, add, o, mul, e>
*
* Matrix<S, add, o, mul, e>(n) : O(n^2)
* n×n
*
* Matrix<S, add, o, mul, e>(vvS a) : O(m n)
* a[0..m)[0..n)
*
* A + B : O(m n)
* m×n A, B += 使
*
* c * A A * c : O(m n)
* m×n A c
*
* A * x x * A : O(m n)
* []
*
* A * B : O(l m n)
* l×m A m×n B
*
* pow(d) : O(n^3 log d)
* d
*/
template <class S, S(*add)(S, S), S(*o)(), S(*mul)(S, S), S(*e)()>
struct Matrix {
int m, n; // m n
vector<vector<S>> v; //
//
Matrix() : m(0), n(0) {}
Matrix(int m, int n) : m(m), n(n), v(m, vector<S>(n, o())) {}
Matrix(int n) : m(n), n(n), v(n, vector<S>(n, o())) { rep(i, n) v[i][i] = e(); }
Matrix(const vector<vector<S>>& a) : m(sz(a)), n(sz(a[0])), v(a) {}
//
Matrix(const Matrix& b) = default;
Matrix& operator=(const Matrix& b) = default;
//
friend istream& operator>>(istream& is, Matrix& a) {
rep(i, a.m) rep(j, a.n) is >> a[i][j];
return is;
}
//
vector<S> const& operator[](int i) const { return v[i]; }
vector<S>& operator[](int i) { return v[i]; }
//
bool operator==(const Matrix& b) const { return m == b.m && n == b.n && v == b.v; }
bool operator!=(const Matrix& b) const { return !(*this == b); }
//
Matrix& operator+=(const Matrix& b) {
rep(i, m) rep(j, n) v[i][j] = add(v[i][j], b[i][j]);
return *this;
}
Matrix operator+(const Matrix& b) const { Matrix a = *this; return a += b; }
//
Matrix operator*(const S& c) const {
Matrix res(*this);
rep(i, m) rep(j, n) res[i][j] = mul(res[i][j], c);
return res;
}
friend Matrix operator*(const S& c, const Matrix& a) {
Matrix res(a);
rep(i, a.m) rep(j, a.n) res[i][j] = mul(c, res[i][j]);
return res;
}
// : O(m n)
vector<S> operator*(const vector<S>& x) const {
vector<S> y(m, o());
rep(i, m) rep(j, n) y[i] = add(y[i], mul(v[i][j], x[j]));
return y;
}
// : O(m n)
friend vector<S> operator*(const vector<S>& x, const Matrix& a) {
// verify : https://codeforces.com/contest/1681/problem/E
vector<S> y(a.n, o());
rep(i, a.m) rep(j, a.n) y[j] = add(y[j], mul(x[i], a[i][j]));
return y;
}
// O(n^3)
Matrix operator*(const Matrix& b) const {
// verify : https://codeforces.com/contest/1681/problem/E
Matrix res(m, b.n);
rep(i, res.m) rep(j, res.n) rep(k, n) res[i][j] = add(res[i][j], mul(v[i][k], b[k][j]));
return res;
}
// O(n^3 log d)
Matrix pow(ll d) const {
// verify : https://atcoder.jp/contests/abc009/tasks/abc009_4
Matrix res(n), pow2(*this);
while (d > 0) {
if ((d & 1) != 0) res = res * pow2;
pow2 = pow2 * pow2;
d /= 2;
}
return res;
}
#ifdef _MSC_VER
friend ostream& operator<<(ostream& os, const Matrix& a) {
rep(i, a.m) {
rep(j, a.n) os << a[i][j] << " ";
os << endl;
}
return os;
}
#endif
};
//OR - AND
using S809 = unsigned int;
S809 add809(S809 x, S809 y) { return x | y; }
S809 o809() { return 0; }
S809 mul809(S809 x, S809 y) { return x & y; }
S809 e809() { return ~0; }
#define OR_AND_semiring S809, add809, o809, mul809, e809
int main() {
// input_from_file("input.txt");
// output_to_file("output.txt");
int n, m; ll t;
cin >> n >> m >> t;
Matrix<OR_AND_semiring> mat(n, n);
rep(j, m) {
int a, b;
cin >> a >> b;
mat[a][b] = 1;
}
mat = mat.pow(t);
int res = 0;
rep(i, n) res += mat[0][i] != 0;
cout << res << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0