結果
問題 | No.2393 Bit Grid Connected Component |
ユーザー |
|
提出日時 | 2023-07-29 06:04:27 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 34 ms / 2,000 ms |
コード長 | 5,385 bytes |
コンパイル時間 | 1,066 ms |
コンパイル使用メモリ | 128,676 KB |
最終ジャッジ日時 | 2025-02-15 20:53:18 |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 20 |
ソースコード
#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <chrono>#include <cmath>#include <complex>#include <cstdint>#include <cstring>#include <ctime>#include <deque>#include <iomanip>#include <iostream>#include <map>#include <numeric>#include <queue>#include <random>#include <set>#include <unordered_map>#include <unordered_set>using namespace std;template <int mod>struct ModInt {int x;ModInt() : x(0) {}ModInt(long long y) : x(y >= 0 ? y % mod : (mod - (-y) % mod) % mod) {}ModInt &operator+=(const ModInt &p) {if ((x += p.x) >= mod) x -= mod;return *this;}ModInt &operator-=(const ModInt &p) {if ((x += mod - p.x) >= mod) x -= mod;return *this;}ModInt &operator*=(const ModInt &p) {x = (int)(1LL * x * p.x % mod);return *this;}ModInt &operator/=(const ModInt &p) {*this *= p.inverse();return *this;}ModInt &operator^=(long long p) { // quick_pow here:3ModInt res = 1;for (; p; p >>= 1) {if (p & 1) res *= *this;*this *= *this;}return *this = res;}ModInt operator-() const { return ModInt(-x); }ModInt operator+(const ModInt &p) const { return ModInt(*this) += p; }ModInt operator-(const ModInt &p) const { return ModInt(*this) -= p; }ModInt operator*(const ModInt &p) const { return ModInt(*this) *= p; }ModInt operator/(const ModInt &p) const { return ModInt(*this) /= p; }ModInt operator^(long long p) const { return ModInt(*this) ^= p; }bool operator==(const ModInt &p) const { return x == p.x; }bool operator!=(const ModInt &p) const { return x != p.x; }explicit operator int() const { return x; } // added by QCFiumModInt operator=(const int p) {x = p;return ModInt(*this);} // added by QCFiumModInt inverse() const {int a = x, b = mod, u = 1, v = 0, t;while (b > 0) {t = a / b;a -= t * b;std::swap(a, b);u -= t * v;std::swap(u, v);}return ModInt(u);}friend std::ostream &operator<<(std::ostream &os, const ModInt<mod> &p) {return os << p.x;}friend std::istream &operator>>(std::istream &is, ModInt<mod> &a) {long long x;is >> x;a = ModInt<mod>(x);return (is);}};struct Mo {int n;std::vector<std::pair<int, int>> lr;explicit Mo(int n) : n(n) {}void add(int l, int r) { /* [l, r) */lr.emplace_back(l, r);}template <typename AL, typename AR, typename EL, typename ER, typename O>void build(const AL &add_left, const AR &add_right, const EL &erase_left,const ER &erase_right, const O &out) {int q = (int)lr.size();int bs = n / std::min<int>(n, sqrt(q));std::vector<int> ord(q);std::iota(std::begin(ord), std::end(ord), 0);std::sort(std::begin(ord), std::end(ord), [&](int a, int b) {int ablock = lr[a].first / bs, bblock = lr[b].first / bs;if (ablock != bblock) return ablock < bblock;return (ablock & 1) ? lr[a].second > lr[b].second: lr[a].second < lr[b].second;});int l = 0, r = 0;for (auto idx : ord) {while (l > lr[idx].first) add_left(--l);while (r < lr[idx].second) add_right(r++);while (l < lr[idx].first) erase_left(l++);while (r > lr[idx].second) erase_right(--r);out(idx);}}template <typename A, typename E, typename O>void build(const A &add, const E &erase, const O &out) {build(add, add, erase, erase, out);}};template <typename T>struct DSU {std::vector<T> f, siz;DSU(int n) : f(n), siz(n, 1) { std::iota(f.begin(), f.end(), 0); }T leader(T x) {while (x != f[x]) x = f[x] = f[f[x]];return x;}bool same(T x, T y) { return leader(x) == leader(y); }bool merge(T x, T y) {x = leader(x);y = leader(y);if (x == y) return false;siz[x] += siz[y];f[y] = x;return true;}T size(int x) { return siz[leader(x)]; }};using mint = ModInt<998244353>;const int MOD = 998244353;struct MComb {std::vector<mint> fact;std::vector<mint> inversed;MComb(int n) { // O(n+log(mod))fact = std::vector<mint>(n + 1, 1);for (int i = 1; i <= n; i++) fact[i] = fact[i - 1] * mint(i);inversed = std::vector<mint>(n + 1);inversed[n] = fact[n] ^ (MOD - 2);for (int i = n - 1; i >= 0; i--)inversed[i] = inversed[i + 1] * mint(i + 1);}mint ncr(int n, int r) {if (n < r) return 0;return (fact[n] * inversed[r] * inversed[n - r]);}mint npr(int n, int r) { return (fact[n] * inversed[n - r]); }mint nhr(int n, int r) {assert(n + r - 1 < (int)fact.size());return ncr(n + r - 1, r);}};mint ncr(int n, int r) {mint res = 1;for (int i = n - r + 1; i <= n; i++) res *= i;for (int i = 1; i <= r; i++) res /= i;return res;}long long mod_pow(long long x, int n, int p) {long long ret = 1;while (n) {if (n & 1) (ret *= x) %= p;(x *= x) %= p;n >>= 1;}return ret;}void solve() {int t;std::cin >> t;while (t--) {long long x;int y;std::cin >> x >> y;while ((x >> y) & 1) {y++;}long long ans = 1LL << y;ans -= 1;std::cout << ans << '\n';}}int main() {std::ios::sync_with_stdio(false);std::cin.tie(nullptr);int t = 1;while (t--) solve();return 0;}