結果
問題 | No.2250 Split Permutation |
ユーザー |
|
提出日時 | 2023-07-30 01:08:27 |
言語 | Rust (1.83.0 + proconio) |
結果 |
AC
|
実行時間 | 163 ms / 3,000 ms |
コード長 | 7,304 bytes |
コンパイル時間 | 14,695 ms |
コンパイル使用メモリ | 405,496 KB |
実行使用メモリ | 11,648 KB |
最終ジャッジ日時 | 2024-10-08 13:10:29 |
合計ジャッジ時間 | 18,611 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 35 |
ソースコード
// https://qiita.com/tanakh/items/0ba42c7ca36cd29d0ac8macro_rules! input {($($r:tt)*) => {let stdin = std::io::stdin();let mut bytes = std::io::Read::bytes(std::io::BufReader::new(stdin.lock()));let mut next = move || -> String{bytes.by_ref().map(|r|r.unwrap() as char).skip_while(|c|c.is_whitespace()).take_while(|c|!c.is_whitespace()).collect()};input_inner!{next, $($r)*}};}macro_rules! input_inner {($next:expr) => {};($next:expr,) => {};($next:expr, $var:ident : $t:tt $($r:tt)*) => {let $var = read_value!($next, $t);input_inner!{$next $($r)*}};}macro_rules! read_value {($next:expr, [ $t:tt ; $len:expr ]) => {(0..$len).map(|_| read_value!($next, $t)).collect::<Vec<_>>()};($next:expr, usize1) => (read_value!($next, usize) - 1);($next:expr, $t:ty) => ($next().parse::<$t>().expect("Parse error"));}// Segment Tree. This data structure is useful for fast folding on intervals of an array// whose elements are elements of monoid I. Note that constructing this tree requires the identity// element of I and the operation of I.// Verified by: yukicoder No. 2220 (https://yukicoder.me/submissions/841554)struct SegTree<I, BiOp> {n: usize,orign: usize,dat: Vec<I>,op: BiOp,e: I,}impl<I, BiOp> SegTree<I, BiOp>where BiOp: Fn(I, I) -> I,I: Copy {pub fn new(n_: usize, op: BiOp, e: I) -> Self {let mut n = 1;while n < n_ { n *= 2; } // n is a power of 2SegTree {n: n, orign: n_, dat: vec![e; 2 * n - 1], op: op, e: e}}// ary[k] <- vpub fn update(&mut self, idx: usize, v: I) {debug_assert!(idx < self.orign);let mut k = idx + self.n - 1;self.dat[k] = v;while k > 0 {k = (k - 1) / 2;self.dat[k] = (self.op)(self.dat[2 * k + 1], self.dat[2 * k + 2]);}}// [a, b) (half-inclusive)// http://proc-cpuinfo.fixstars.com/2017/07/optimize-segment-tree/#[allow(unused)]pub fn query(&self, rng: std::ops::Range<usize>) -> I {let (mut a, mut b) = (rng.start, rng.end);debug_assert!(a <= b);debug_assert!(b <= self.orign);let mut left = self.e;let mut right = self.e;a += self.n - 1;b += self.n - 1;while a < b {if (a & 1) == 0 {left = (self.op)(left, self.dat[a]);}if (b & 1) == 0 {right = (self.op)(self.dat[b - 1], right);}a = a / 2;b = (b - 1) / 2;}(self.op)(left, right)}}/// Verified by https://atcoder.jp/contests/abc198/submissions/21774342mod mod_int {use std::ops::*;pub trait Mod: Copy { fn m() -> i64; }#[derive(Copy, Clone, Hash, PartialEq, Eq, PartialOrd, Ord)]pub struct ModInt<M> { pub x: i64, phantom: ::std::marker::PhantomData<M> }impl<M: Mod> ModInt<M> {// x >= 0pub fn new(x: i64) -> Self { ModInt::new_internal(x % M::m()) }fn new_internal(x: i64) -> Self {ModInt { x: x, phantom: ::std::marker::PhantomData }}pub fn pow(self, mut e: i64) -> Self {debug_assert!(e >= 0);let mut sum = ModInt::new_internal(1);let mut cur = self;while e > 0 {if e % 2 != 0 { sum *= cur; }cur *= cur;e /= 2;}sum}#[allow(dead_code)]pub fn inv(self) -> Self { self.pow(M::m() - 2) }}impl<M: Mod> Default for ModInt<M> {fn default() -> Self { Self::new_internal(0) }}impl<M: Mod, T: Into<ModInt<M>>> Add<T> for ModInt<M> {type Output = Self;fn add(self, other: T) -> Self {let other = other.into();let mut sum = self.x + other.x;if sum >= M::m() { sum -= M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Sub<T> for ModInt<M> {type Output = Self;fn sub(self, other: T) -> Self {let other = other.into();let mut sum = self.x - other.x;if sum < 0 { sum += M::m(); }ModInt::new_internal(sum)}}impl<M: Mod, T: Into<ModInt<M>>> Mul<T> for ModInt<M> {type Output = Self;fn mul(self, other: T) -> Self { ModInt::new(self.x * other.into().x % M::m()) }}impl<M: Mod, T: Into<ModInt<M>>> AddAssign<T> for ModInt<M> {fn add_assign(&mut self, other: T) { *self = *self + other; }}impl<M: Mod, T: Into<ModInt<M>>> SubAssign<T> for ModInt<M> {fn sub_assign(&mut self, other: T) { *self = *self - other; }}impl<M: Mod, T: Into<ModInt<M>>> MulAssign<T> for ModInt<M> {fn mul_assign(&mut self, other: T) { *self = *self * other; }}impl<M: Mod> Neg for ModInt<M> {type Output = Self;fn neg(self) -> Self { ModInt::new(0) - self }}impl<M> ::std::fmt::Display for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {self.x.fmt(f)}}impl<M: Mod> ::std::fmt::Debug for ModInt<M> {fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {let (mut a, mut b, _) = red(self.x, M::m());if b < 0 {a = -a;b = -b;}write!(f, "{}/{}", a, b)}}impl<M: Mod> From<i64> for ModInt<M> {fn from(x: i64) -> Self { Self::new(x) }}// Finds the simplest fraction x/y congruent to r mod p.// The return value (x, y, z) satisfies x = y * r + z * p.fn red(r: i64, p: i64) -> (i64, i64, i64) {if r.abs() <= 10000 {return (r, 1, 0);}let mut nxt_r = p % r;let mut q = p / r;if 2 * nxt_r >= r {nxt_r -= r;q += 1;}if 2 * nxt_r <= -r {nxt_r += r;q -= 1;}let (x, z, y) = red(nxt_r, r);(x, y - q * z, z)}} // mod mod_intmacro_rules! define_mod {($struct_name: ident, $modulo: expr) => {#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]pub struct $struct_name {}impl mod_int::Mod for $struct_name { fn m() -> i64 { $modulo } }}}const MOD: i64 = 998_244_353;define_mod!(P, MOD);type MInt = mod_int::ModInt<P>;// https://yukicoder.me/problems/no/2250 (3)// p[i] > p[j] のときの 2^{N-1}(1 - 2^{-i} 2^j) の和を求めれば良い。fn main() {input! {n: usize,p: [usize1; n],}let mut st = SegTree::new(n, |x, y| x + y, MInt::new(0));let mut st2 = SegTree::new(n, |x, y| x + y, MInt::new(0));let mut tot = MInt::new(0);for i in 0..n {tot += st.query(p[i] + 1..n);tot -= st2.query(p[i] + 1..n) * MInt::new(2).pow(MOD - 1 - i as i64);st.update(p[i], MInt::new(1));st2.update(p[i], MInt::new(2).pow(i as i64));}println!("{}", tot * MInt::new(2).pow(n as i64 - 1));}