結果
問題 | No.1744 Selfish Spies 1 (à la Princess' Perfectionism) |
ユーザー | vwxyz |
提出日時 | 2023-08-08 23:50:58 |
言語 | PyPy3 (7.3.15) |
結果 |
TLE
|
実行時間 | - |
コード長 | 5,075 bytes |
コンパイル時間 | 351 ms |
コンパイル使用メモリ | 82,252 KB |
実行使用メモリ | 173,116 KB |
最終ジャッジ日時 | 2024-11-14 05:03:17 |
合計ジャッジ時間 | 47,977 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 64 ms
172,540 KB |
testcase_01 | AC | 63 ms
76,316 KB |
testcase_02 | AC | 67 ms
173,116 KB |
testcase_03 | AC | 62 ms
68,772 KB |
testcase_04 | AC | 63 ms
68,504 KB |
testcase_05 | AC | 64 ms
69,908 KB |
testcase_06 | AC | 63 ms
69,280 KB |
testcase_07 | AC | 67 ms
68,840 KB |
testcase_08 | AC | 67 ms
69,380 KB |
testcase_09 | AC | 81 ms
73,452 KB |
testcase_10 | AC | 102 ms
78,104 KB |
testcase_11 | AC | 130 ms
79,216 KB |
testcase_12 | AC | 129 ms
79,240 KB |
testcase_13 | AC | 172 ms
79,020 KB |
testcase_14 | AC | 228 ms
79,584 KB |
testcase_15 | AC | 236 ms
79,920 KB |
testcase_16 | AC | 306 ms
80,512 KB |
testcase_17 | AC | 649 ms
83,760 KB |
testcase_18 | AC | 701 ms
82,144 KB |
testcase_19 | AC | 92 ms
78,112 KB |
testcase_20 | AC | 131 ms
79,028 KB |
testcase_21 | AC | 155 ms
79,292 KB |
testcase_22 | AC | 125 ms
78,412 KB |
testcase_23 | AC | 167 ms
79,364 KB |
testcase_24 | AC | 879 ms
85,276 KB |
testcase_25 | AC | 352 ms
81,068 KB |
testcase_26 | AC | 313 ms
81,216 KB |
testcase_27 | AC | 552 ms
82,364 KB |
testcase_28 | TLE | - |
testcase_29 | AC | 661 ms
82,660 KB |
testcase_30 | AC | 770 ms
82,752 KB |
testcase_31 | AC | 572 ms
82,700 KB |
testcase_32 | AC | 772 ms
83,192 KB |
testcase_33 | TLE | - |
testcase_34 | TLE | - |
testcase_35 | TLE | - |
testcase_36 | AC | 2,584 ms
104,580 KB |
testcase_37 | AC | 4,717 ms
105,352 KB |
testcase_38 | TLE | - |
ソースコード
import sys readline=sys.stdin.readline from typing import NamedTuple, Optional, List, cast class MFGraph: class Edge(NamedTuple): src: int dst: int cap: int flow: int class _Edge: def __init__(self, dst: int, cap: int) -> None: self.dst = dst self.cap = cap self.rev: Optional[MFGraph._Edge] = None def __init__(self, n: int) -> None: self._n = n self._g: List[List[MFGraph._Edge]] = [[] for _ in range(n)] self._edges: List[MFGraph._Edge] = [] def add_edge(self, src: int, dst: int, cap: int) -> int: assert 0 <= src < self._n assert 0 <= dst < self._n assert 0 <= cap m = len(self._edges) e = MFGraph._Edge(dst, cap) re = MFGraph._Edge(src, 0) e.rev = re re.rev = e self._g[src].append(e) self._g[dst].append(re) self._edges.append(e) return m def get_edge(self, i: int) -> Edge: assert 0 <= i < len(self._edges) e = self._edges[i] re = cast(MFGraph._Edge, e.rev) return MFGraph.Edge( re.dst, e.dst, e.cap + re.cap, re.cap ) def edges(self) -> List[Edge]: return [self.get_edge(i) for i in range(len(self._edges))] def change_edge(self, i: int, new_cap: int, new_flow: int) -> None: assert 0 <= i < len(self._edges) assert 0 <= new_flow <= new_cap e = self._edges[i] e.cap = new_cap - new_flow assert e.rev is not None e.rev.cap = new_flow def flow(self, s: int, t: int, flow_limit: Optional[int] = None) -> int: assert 0 <= s < self._n assert 0 <= t < self._n assert s != t if flow_limit is None: flow_limit = cast(int, sum(e.cap for e in self._g[s])) current_edge = [0] * self._n level = [0] * self._n def fill(arr: List[int], value: int) -> None: for i in range(len(arr)): arr[i] = value def bfs() -> bool: fill(level, self._n) queue = [] q_front = 0 queue.append(s) level[s] = 0 while q_front < len(queue): v = queue[q_front] q_front += 1 next_level = level[v] + 1 for e in self._g[v]: if e.cap == 0 or level[e.dst] <= next_level: continue level[e.dst] = next_level if e.dst == t: return True queue.append(e.dst) return False def dfs(lim: int) -> int: stack = [] edge_stack: List[MFGraph._Edge] = [] stack.append(t) while stack: v = stack[-1] if v == s: flow = min(lim, min(e.cap for e in edge_stack)) for e in edge_stack: e.cap -= flow assert e.rev is not None e.rev.cap += flow return flow next_level = level[v] - 1 while current_edge[v] < len(self._g[v]): e = self._g[v][current_edge[v]] re = cast(MFGraph._Edge, e.rev) if level[e.dst] != next_level or re.cap == 0: current_edge[v] += 1 continue stack.append(e.dst) edge_stack.append(re) break else: stack.pop() if edge_stack: edge_stack.pop() level[v] = self._n return 0 flow = 0 while flow < flow_limit: if not bfs(): break fill(current_edge, 0) while flow < flow_limit: f = dfs(flow_limit - flow) flow += f if f == 0: break return flow def min_cut(self, s: int) -> List[bool]: visited = [False] * self._n stack = [s] visited[s] = True while stack: v = stack.pop() for e in self._g[v]: if e.cap > 0 and not visited[e.dst]: visited[e.dst] = True stack.append(e.dst) return visited N,M,L=map(int,readline().split()) s=0 t=N+M+1 MFG=MFGraph(N+M+2) s=0 t=N+M+1 for l in range(L): x,y=map(int,readline().split()) x-=1;y-=1 MFG.add_edge(1+x,1+N+y,1) for n in range(N): MFG.add_edge(s,1+n,1) for m in range(M): MFG.add_edge(1+N+m,t,1) MFG.flow(s,t) for l in range(L): e=MFG.get_edge(l) if e.flow: MFG.change_edge(l,0,0) if MFG.flow(e.src,e.dst): ans="Yes" MFG.flow(e.dst,e.src) else: ans="No" MFG.change_edge(l,1,1) else: ans="Yes" print(ans)