結果
問題 | No.2404 Vertical Throw Up |
ユーザー |
![]() |
提出日時 | 2023-08-09 16:56:24 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 45 ms / 2,000 ms |
コード長 | 12,077 bytes |
コンパイル時間 | 2,695 ms |
コンパイル使用メモリ | 211,256 KB |
最終ジャッジ日時 | 2025-02-16 00:21:37 |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
// clang-format off#ifdef _LOCAL#include <pch.hpp>#else#include <bits/stdc++.h>#define cerr if (false) cerr#define debug_bar#define debug(...)#define debug2(vv)#define debug3(vvv)#endifusing namespace std;using ll = long long;using ld = long double;using str = string;using P = pair<ll,ll>;using VP = vector<P>;using VVP = vector<VP>;using VC = vector<char>;using VS = vector<string>;using VVS = vector<VS>;using VI = vector<int>;using VVI = vector<VI>;using VVVI = vector<VVI>;using VLL = vector<ll>;using VVLL = vector<VLL>;using VVVLL = vector<VVLL>;using VB = vector<bool>;using VVB = vector<VB>;using VVVB = vector<VVB>;using VD = vector<double>;using VVD = vector<VD>;using VVVD = vector<VVD>;#define FOR(i,l,r) for (ll i = (l); i < (r); ++i)#define RFOR(i,l,r) for (ll i = (r)-1; (l) <= i; --i)#define REP(i,n) FOR(i,0,n)#define RREP(i,n) RFOR(i,0,n)#define FORE(e,c) for (auto&& e : c)#define ALL(c) (c).begin(), (c).end()#define SORT(c) sort(ALL(c))#define RSORT(c) sort((c).rbegin(), (c).rend())#define MIN(c) *min_element(ALL(c))#define MAX(c) *max_element(ALL(c))#define COUNT(c,v) count(ALL(c),(v))#define len(c) ((ll)(c).size())#define BIT(b,i) (((b)>>(i)) & 1)#define PCNT(b) ((ll)__builtin_popcountll(b))#define LB(c,v) distance((c).begin(), lower_bound(ALL(c), (v)))#define UB(c,v) distance((c).begin(), upper_bound(ALL(c), (v)))#define UQ(c) do { SORT(c); (c).erase(unique(ALL(c)), (c).end()); (c).shrink_to_fit(); } while (0)#define END(...) do { print(__VA_ARGS__); exit(0); } while (0)constexpr ld EPS = 1e-10;constexpr ld PI = acosl(-1.0);constexpr int inf = (1 << 30) - (1 << 15); // 1,073,709,056constexpr ll INF = (1LL << 62) - (1LL << 31); // 4,611,686,016,279,904,256template<class... T> void input(T&... a) { (cin >> ... >> a); }void print() { cout << '\n'; }template<class T> void print(const T& a) { cout << a << '\n'; }template<class P1, class P2> void print(const pair<P1, P2>& a) { cout << a.first << " " << a.second << '\n'; }template<class T, class... Ts> void print(const T& a, const Ts&... b) { cout << a; (cout << ... << (cout << ' ', b)); cout << '\n'; }template<class T> void cout_line(const vector<T>& ans, int l, int r) { for (int i = l; i < r; i++) { if (i != l) { cout << ' '; } cout << ans[i]; }cout << '\n'; }template<class T> void print(const vector<T>& a) { cout_line(a, 0, a.size()); }template<class S, class T> bool chmin(S& a, const T b) { if (b < a) { a = b; return 1; } return 0; }template<class S, class T> bool chmax(S& a, const T b) { if (a < b) { a = b; return 1; } return 0; }template<class T> T SUM(const vector<T>& A) { return accumulate(ALL(A), T(0)); }template<class T> vector<T> cumsum(const vector<T>& A, bool offset = false) { int N = A.size(); vector<T> S(N+1, 0); for (int i = 0; i < N; i++) {S[i+1] = S[i] + A[i]; } if (not offset) { S.erase(S.begin()); } return S; }template<class T> string to_binary(T x, int B = 0) { string s; while (x) { s += ('0' + (x & 1)); x >>= 1; } while ((int)s.size() < B) { s += '0'; }reverse(s.begin(), s.end()); return s; }template<class F> ll binary_search(const F& is_ok, ll ok, ll ng) { while (abs(ok - ng) > 1) { ll m = (ok + ng) / 2; (is_ok(m) ? ok : ng) = m; }return ok; }template<class F> double binary_search_real(const F& is_ok, double ok, double ng, int iter = 90) { for (int i = 0; i < iter; i++) { double m = (ok +ng) / 2; (is_ok(m) ? ok : ng) = m; } return ok; }template<class T> using PQ_max = priority_queue<T>;template<class T> using PQ_min = priority_queue<T, vector<T>, greater<T>>;template<class T> T pick(stack<T>& s) { assert(not s.empty()); T x = s.top(); s.pop(); return x; }template<class T> T pick(queue<T>& q) { assert(not q.empty()); T x = q.front(); q.pop(); return x; }template<class T> T pick_front(deque<T>& dq) { assert(not dq.empty()); T x = dq.front(); dq.pop_front(); return x; }template<class T> T pick_back(deque<T>& dq) { assert(not dq.empty()); T x = dq.back(); dq.pop_back(); return x; }template<class T> T pick(PQ_min<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }template<class T> T pick(PQ_max<T>& pq) { assert(not pq.empty()); T x = pq.top(); pq.pop(); return x; }template<class T> T pick(vector<T>& v) { assert(not v.empty()); T x = v.back(); v.pop_back(); return x; }int to_int(const char c) { if (islower(c)) { return (c - 'a'); } if (isupper(c)) { return (c - 'A'); } if (isdigit(c)) { return (c - '0'); } assert(false); }char to_a(const int i) { assert(0 <= i && i < 26); return ('a' + i); }char to_A(const int i) { assert(0 <= i && i < 26); return ('A' + i); }char to_d(const int i) { assert(0 <= i && i <= 9); return ('0' + i); }ll min(int a, ll b) { return min((ll)a, b); }ll min(ll a, int b) { return min(a, (ll)b); }ll max(int a, ll b) { return max((ll)a, b); }ll max(ll a, int b) { return max(a, (ll)b); }ll mod(ll x, ll m) { assert(m > 0); return (x % m + m) % m; }ll ceil(ll a, ll b) { if (b < 0) { return ceil(-a, -b); } assert(b > 0); return (a < 0 ? a / b : (a + b - 1) / b); }ll floor(ll a, ll b) { if (b < 0) { return floor(-a, -b); } assert(b > 0); return (a > 0 ? a / b : (a - b + 1) / b); }ll powint(ll x, ll n) { assert(n >= 0); if (n == 0) { return 1; }; ll res = powint(x, n>>1); res *= res; if (n & 1) { res *= x; } return res; }pair<ll,ll> divmod(ll a, ll b) { assert(b != 0); ll q = floor(a, b); return make_pair(q, a - q * b); }ll bitlen(ll b) { if (b <= 0) { return 0; } return (64LL - __builtin_clzll(b)); }ll digitlen(ll n) { assert(n >= 0); if (n == 0) { return 1; } ll sum = 0; while (n > 0) { sum++; n /= 10; } return sum; }ll msb(ll b) { return (b <= 0 ? -1 : (63 - __builtin_clzll(b))); }ll lsb(ll b) { return (b <= 0 ? -1 : __builtin_ctzll(b)); }// --------------------------------------------------------// 座標圧縮template <class T = ll>struct compress {public:compress() {}compress(const vector<T>& A) : xs(A) {}compress(const vector<T>& A, const vector<T>& B) {xs.reserve(A.size() + B.size());for (const auto& a : A) { xs.push_back(a); }for (const auto& b : B) { xs.push_back(b); }}// 値 v を追加する// - amortized O(1)void add(T v) {assert(not is_built);xs.push_back(v);}// 配列 A の値を全て追加する// - O(|A|)void add(const vector<T>& A) {assert(not is_built);xs.reserve(xs.size() + A.size());for (const auto& a : A) { xs.push_back(a); }}// 座標圧縮して種類数を返す// - O(N log N)int build() {assert(not is_built);sort(xs.begin(), xs.end());xs.erase(unique(xs.begin(), xs.end()), xs.end());is_built = true;return xs.size();}// 座標圧縮前で i 番目に大きい値を返す (0-indexed)// - O(1)T operator[] (int i) const noexcept {assert(is_built);assert(0 <= i && i < (int)xs.size());return xs[i];}// 値 v に対応する座標圧縮後の値(番号)を返す// 値 v が元の配列に存在することを想定// - O(log N)int operator() (T v) const noexcept {assert(is_built);auto it = lower_bound(xs.begin(), xs.end(), v);assert(it != xs.end() && *it == v);return distance(xs.begin(), it);}// 座標圧縮後の値の種類数を返す// - O(1)int size() const noexcept {assert(is_built);return xs.size();}private:bool is_built = false;vector<T> xs;};// References:// <https://smijake3.hatenablog.com/entry/2018/06/16/144548>// <https://tjkendev.github.io/procon-library/cpp/convex_hull_trick/li_chao_tree.html>// <https://cp-algorithms.com/geometry/convex_hull_trick.html>// <https://kazuma8128.hatenablog.com/entry/2018/02/28/102130>// Convex Hull Trick (Li-Chao Segment Tree)// - 座標圧縮をしておく必要あり (x_1 < x_2 < ... < x_n)// - 最大値取得をしたい場合はマイナスを付けて直線追加して結果にもマイナスを付ける// - (a, b) -> (-a, -b)// - query() -> query() * (-1)// - 下記を想定(必要に応じて調整)// - max(x) < INF_x// - max(y) < INF_ystruct LiChaoSegtree {public:LiChaoSegtree(int n, const vector<ll>& ps, ll inf_x = -1, ll inf_y = -1) {N = 1;while (N < n) { N <<= 1; }xs.resize(2*N); p.resize(2*N); q.resize(2*N);used.resize(2*N, false);if (inf_x == -1) { INF_x = *max_element(ps.begin(), ps.end()) + 1; }if (inf_y == -1) { INF_y = INF; }for (int i = 0; i < n; i++) { xs[i] = ps[i]; }for (int i = n; i < 2*N; i++) { xs[i] = INF_x; }}// 直線 (a,b) の追加// - O(log N)void add_line(ll a, ll b) { _add_line(a, b, 0, 0, N); }// 区間 [x_l, x_r) に対する線分 (a,b) の追加// - O(log N)void add_segment_line(ll a, ll b, int l, int r) {int L = l + N, R = r + N;int sz = 1;while (L < R) {if (L & 1) {_add_line(a, b, L-1, l, l+sz);L++; l += sz;}if (R & 1) {R--; r -= sz;_add_line(a, b, R-1, r, r+sz);}L >>= 1; R >>= 1;sz <<= 1;}}// i 番目の座標に対する最小値を返す// - O(log N)ll query(int i) const {ll x = xs[i];int k = i + (N - 1);ll res = (used[k] ? p[k]*x + q[k] : INF_y);while (k > 0) {k = (k - 1) / 2;if (used[k]) { chmin(res, p[k]*x + q[k]); }}return res;}private:int N; // 座標の数ll INF_x; // 葉ノード以外のダミー座標ll INF_y; // 最小値クエリの初期値vector<ll> xs, p, q; // 座標・傾き・接線vector<bool> used; // ノードが一度も使用されていなければ false// 区間 [l,r) に対する直線 (a,b) の追加処理 : O(log N)void _add_line(ll a, ll b, int k, int l, int r) {while (l < r) {if(not used[k]) {used[k] = true; p[k] = a; q[k] = b;return;}int m = (l + r) / 2;ll lx = xs[l], mx = xs[m], rx = xs[r-1];ll pk = p[k], qk = q[k];bool left = (a*lx + b < pk*lx + qk);bool mid = (a*mx + b < pk*mx + qk);bool right = (a*rx + b < pk*rx + qk);if (left && right) { // 直線 (a,b) が全勝p[k] = a;q[k] = b;return;} else if (not left && not right) { // 直線 (p,q) が全勝return;} else if (mid) { // swap することで探索区間を片側だけに減らすテクswap(p[k], a);swap(q[k], b);} else if (left != mid) { // [l,m) で直線 (a,b) が勝つ部分ありk = 2*k + 1; r = m;} else { // [m,r) で直線 (a,b) が勝つ部分ありk = 2*k + 2; l = m;}}}};// clang-format onint main() {ios::sync_with_stdio(false);cin.tie(nullptr);cout << fixed << setprecision(15);ll a;input(a);ll Q;input(Q);VLL q(Q), s(Q), t(Q);REP (i, Q) {input(q[i]);if (q[i] == 1) {input(s[i], t[i]);} else {input(t[i]);}}compress<ll> z(t);ll M = z.build();VLL T(M);REP (m, M) { T[m] = z[m]; }LiChaoSegtree cht(M, T);REP (i, Q) {if (q[i] == 1) {ll A = a * (s[i] + t[i]);ll B = -a * s[i] * t[i];cht.add_line(-A, -B);} else {ll ans = -cht.query(z(t[i])) + (-a * t[i] * t[i]);chmax(ans, 0);print(ans);}}return 0;}