結果
問題 | No.2435 Order All Company |
ユーザー |
|
提出日時 | 2023-08-18 21:20:56 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 32 ms / 2,000 ms |
コード長 | 29,524 bytes |
コンパイル時間 | 2,666 ms |
コンパイル使用メモリ | 273,784 KB |
最終ジャッジ日時 | 2025-02-16 09:31:14 |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 36 |
ソースコード
/*** date : 2023-08-18 21:20:50* author : Nyaan*/#define NDEBUGusing namespace std;// intrinstic#include <immintrin.h>#include <algorithm>#include <array>#include <bitset>#include <cassert>#include <cctype>#include <cfenv>#include <cfloat>#include <chrono>#include <cinttypes>#include <climits>#include <cmath>#include <complex>#include <cstdarg>#include <cstddef>#include <cstdint>#include <cstdio>#include <cstdlib>#include <cstring>#include <deque>#include <fstream>#include <functional>#include <initializer_list>#include <iomanip>#include <ios>#include <iostream>#include <istream>#include <iterator>#include <limits>#include <list>#include <map>#include <memory>#include <new>#include <numeric>#include <ostream>#include <queue>#include <random>#include <set>#include <sstream>#include <stack>#include <streambuf>#include <string>#include <tuple>#include <type_traits>#include <typeinfo>#include <unordered_map>#include <unordered_set>#include <utility>#include <vector>// utilitynamespace Nyaan {using ll = long long;using i64 = long long;using u64 = unsigned long long;using i128 = __int128_t;using u128 = __uint128_t;template <typename T>using V = vector<T>;template <typename T>using VV = vector<vector<T>>;using vi = vector<int>;using vl = vector<long long>;using vd = V<double>;using vs = V<string>;using vvi = vector<vector<int>>;using vvl = vector<vector<long long>>;template <typename T>using minpq = priority_queue<T, vector<T>, greater<T>>;template <typename T, typename U>struct P : pair<T, U> {template <typename... Args>P(Args... args) : pair<T, U>(args...) {}using pair<T, U>::first;using pair<T, U>::second;P &operator+=(const P &r) {first += r.first;second += r.second;return *this;}P &operator-=(const P &r) {first -= r.first;second -= r.second;return *this;}P &operator*=(const P &r) {first *= r.first;second *= r.second;return *this;}template <typename S>P &operator*=(const S &r) {first *= r, second *= r;return *this;}P operator+(const P &r) const { return P(*this) += r; }P operator-(const P &r) const { return P(*this) -= r; }P operator*(const P &r) const { return P(*this) *= r; }template <typename S>P operator*(const S &r) const {return P(*this) *= r;}P operator-() const { return P{-first, -second}; }};using pl = P<ll, ll>;using pi = P<int, int>;using vp = V<pl>;constexpr int inf = 1001001001;constexpr long long infLL = 4004004004004004004LL;template <typename T>int sz(const T &t) {return t.size();}template <typename T, typename U>inline bool amin(T &x, U y) {return (y < x) ? (x = y, true) : false;}template <typename T, typename U>inline bool amax(T &x, U y) {return (x < y) ? (x = y, true) : false;}template <typename T>inline T Max(const vector<T> &v) {return *max_element(begin(v), end(v));}template <typename T>inline T Min(const vector<T> &v) {return *min_element(begin(v), end(v));}template <typename T>inline long long Sum(const vector<T> &v) {return accumulate(begin(v), end(v), 0LL);}template <typename T>int lb(const vector<T> &v, const T &a) {return lower_bound(begin(v), end(v), a) - begin(v);}template <typename T>int ub(const vector<T> &v, const T &a) {return upper_bound(begin(v), end(v), a) - begin(v);}constexpr long long TEN(int n) {long long ret = 1, x = 10;for (; n; x *= x, n >>= 1) ret *= (n & 1 ? x : 1);return ret;}template <typename T, typename U>pair<T, U> mkp(const T &t, const U &u) {return make_pair(t, u);}template <typename T>vector<T> mkrui(const vector<T> &v, bool rev = false) {vector<T> ret(v.size() + 1);if (rev) {for (int i = int(v.size()) - 1; i >= 0; i--) ret[i] = v[i] + ret[i + 1];} else {for (int i = 0; i < int(v.size()); i++) ret[i + 1] = ret[i] + v[i];}return ret;};template <typename T>vector<T> mkuni(const vector<T> &v) {vector<T> ret(v);sort(ret.begin(), ret.end());ret.erase(unique(ret.begin(), ret.end()), ret.end());return ret;}template <typename F>vector<int> mkord(int N, F f) {vector<int> ord(N);iota(begin(ord), end(ord), 0);sort(begin(ord), end(ord), f);return ord;}template <typename T>vector<int> mkinv(vector<T> &v) {int max_val = *max_element(begin(v), end(v));vector<int> inv(max_val + 1, -1);for (int i = 0; i < (int)v.size(); i++) inv[v[i]] = i;return inv;}vector<int> mkiota(int n) {vector<int> ret(n);iota(begin(ret), end(ret), 0);return ret;}template <typename T>T mkrev(const T &v) {T w{v};reverse(begin(w), end(w));return w;}template <typename T>bool nxp(vector<T> &v) {return next_permutation(begin(v), end(v));}// 返り値の型は入力の T に依存// i 要素目 : [0, a[i])template <typename T>vector<vector<T>> product(const vector<T> &a) {vector<vector<T>> ret;vector<T> v;auto dfs = [&](auto rc, int i) -> void {if (i == (int)a.size()) {ret.push_back(v);return;}for (int j = 0; j < a[i]; j++) v.push_back(j), rc(rc, i + 1), v.pop_back();};dfs(dfs, 0);return ret;}// F : function(void(T&)), mod を取る操作// T : 整数型のときはオーバーフローに注意するtemplate <typename T>T Power(T a, long long n, const T &I, const function<void(T &)> &f) {T res = I;for (; n; f(a = a * a), n >>= 1) {if (n & 1) f(res = res * a);}return res;}// T : 整数型のときはオーバーフローに注意するtemplate <typename T>T Power(T a, long long n, const T &I) {return Power(a, n, I, function<void(T &)>{[](T &) -> void {}});}} // namespace Nyaan// bit operationnamespace Nyaan {__attribute__((target("popcnt"))) inline int popcnt(const u64 &a) {return _mm_popcnt_u64(a);}inline int lsb(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }inline int ctz(const u64 &a) { return a ? __builtin_ctzll(a) : 64; }inline int msb(const u64 &a) { return a ? 63 - __builtin_clzll(a) : -1; }template <typename T>inline int gbit(const T &a, int i) {return (a >> i) & 1;}template <typename T>inline void sbit(T &a, int i, bool b) {if (gbit(a, i) != b) a ^= T(1) << i;}constexpr long long PW(int n) { return 1LL << n; }constexpr long long MSK(int n) { return (1LL << n) - 1; }} // namespace Nyaan// inoutnamespace Nyaan {template <typename T, typename U>ostream &operator<<(ostream &os, const pair<T, U> &p) {os << p.first << " " << p.second;return os;}template <typename T, typename U>istream &operator>>(istream &is, pair<T, U> &p) {is >> p.first >> p.second;return is;}template <typename T>ostream &operator<<(ostream &os, const vector<T> &v) {int s = (int)v.size();for (int i = 0; i < s; i++) os << (i ? " " : "") << v[i];return os;}template <typename T>istream &operator>>(istream &is, vector<T> &v) {for (auto &x : v) is >> x;return is;}istream &operator>>(istream &is, __int128_t &x) {string S;is >> S;x = 0;int flag = 0;for (auto &c : S) {if (c == '-') {flag = true;continue;}x *= 10;x += c - '0';}if (flag) x = -x;return is;}istream &operator>>(istream &is, __uint128_t &x) {string S;is >> S;x = 0;for (auto &c : S) {x *= 10;x += c - '0';}return is;}ostream &operator<<(ostream &os, __int128_t x) {if (x == 0) return os << 0;if (x < 0) os << '-', x = -x;string S;while (x) S.push_back('0' + x % 10), x /= 10;reverse(begin(S), end(S));return os << S;}ostream &operator<<(ostream &os, __uint128_t x) {if (x == 0) return os << 0;string S;while (x) S.push_back('0' + x % 10), x /= 10;reverse(begin(S), end(S));return os << S;}void in() {}template <typename T, class... U>void in(T &t, U &...u) {cin >> t;in(u...);}void out() { cout << "\n"; }template <typename T, class... U, char sep = ' '>void out(const T &t, const U &...u) {cout << t;if (sizeof...(u)) cout << sep;out(u...);}struct IoSetupNya {IoSetupNya() {cin.tie(nullptr);ios::sync_with_stdio(false);cout << fixed << setprecision(15);cerr << fixed << setprecision(7);}} iosetupnya;} // namespace Nyaan// debug#ifdef NyaanDebug#define trc(...) (void(0))#else#define trc(...) (void(0))#endif#ifdef NyaanLocal#define trc2(...) (void(0))#else#define trc2(...) (void(0))#endif// macro#define each(x, v) for (auto&& x : v)#define each2(x, y, v) for (auto&& [x, y] : v)#define all(v) (v).begin(), (v).end()#define rep(i, N) for (long long i = 0; i < (long long)(N); i++)#define repr(i, N) for (long long i = (long long)(N)-1; i >= 0; i--)#define rep1(i, N) for (long long i = 1; i <= (long long)(N); i++)#define repr1(i, N) for (long long i = (N); (long long)(i) > 0; i--)#define reg(i, a, b) for (long long i = (a); i < (b); i++)#define regr(i, a, b) for (long long i = (b)-1; i >= (a); i--)#define fi first#define se second#define ini(...) \int __VA_ARGS__; \in(__VA_ARGS__)#define inl(...) \long long __VA_ARGS__; \in(__VA_ARGS__)#define ins(...) \string __VA_ARGS__; \in(__VA_ARGS__)#define in2(s, t) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i]); \}#define in3(s, t, u) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i]); \}#define in4(s, t, u, v) \for (int i = 0; i < (int)s.size(); i++) { \in(s[i], t[i], u[i], v[i]); \}#define die(...) \do { \Nyaan::out(__VA_ARGS__); \return; \} while (0)namespace Nyaan {void solve();}int main() { Nyaan::solve(); }//template <class T>struct Matrix {vector<vector<T> > A;Matrix() = default;Matrix(int n, int m) : A(n, vector<T>(m, T())) {}Matrix(int n) : A(n, vector<T>(n, T())){};int H() const { return A.size(); }int W() const { return A[0].size(); }int size() const { return A.size(); }inline const vector<T> &operator[](int k) const { return A[k]; }inline vector<T> &operator[](int k) { return A[k]; }static Matrix I(int n) {Matrix mat(n);for (int i = 0; i < n; i++) mat[i][i] = 1;return (mat);}Matrix &operator+=(const Matrix &B) {int n = H(), m = W();assert(n == B.H() && m == B.W());for (int i = 0; i < n; i++)for (int j = 0; j < m; j++) (*this)[i][j] += B[i][j];return (*this);}Matrix &operator-=(const Matrix &B) {int n = H(), m = W();assert(n == B.H() && m == B.W());for (int i = 0; i < n; i++)for (int j = 0; j < m; j++) (*this)[i][j] -= B[i][j];return (*this);}Matrix &operator*=(const Matrix &B) {int n = H(), m = B.W(), p = W();assert(p == B.H());vector<vector<T> > C(n, vector<T>(m, T{}));for (int i = 0; i < n; i++)for (int k = 0; k < p; k++)for (int j = 0; j < m; j++) C[i][j] += (*this)[i][k] * B[k][j];A.swap(C);return (*this);}Matrix &operator^=(long long k) {Matrix B = Matrix::I(H());while (k > 0) {if (k & 1) B *= *this;*this *= *this;k >>= 1LL;}A.swap(B.A);return (*this);}Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); }Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); }Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); }Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); }bool operator==(const Matrix &B) const {assert(H() == B.H() && W() == B.W());for (int i = 0; i < H(); i++)for (int j = 0; j < W(); j++)if (A[i][j] != B[i][j]) return false;return true;}bool operator!=(const Matrix &B) const {assert(H() == B.H() && W() == B.W());for (int i = 0; i < H(); i++)for (int j = 0; j < W(); j++)if (A[i][j] != B[i][j]) return true;return false;}friend ostream &operator<<(ostream &os, const Matrix &p) {int n = p.H(), m = p.W();for (int i = 0; i < n; i++) {os << (i ? " " : "") << "[";for (int j = 0; j < m; j++) {os << p[i][j] << (j + 1 == m ? "]\n" : ",");}}return (os);}T determinant() const {Matrix B(*this);assert(H() == W());T ret = 1;for (int i = 0; i < H(); i++) {int idx = -1;for (int j = i; j < W(); j++) {if (B[j][i] != 0) {idx = j;break;}}if (idx == -1) return 0;if (i != idx) {ret *= T(-1);swap(B[i], B[idx]);}ret *= B[i][i];T inv = T(1) / B[i][i];for (int j = 0; j < W(); j++) {B[i][j] *= inv;}for (int j = i + 1; j < H(); j++) {T a = B[j][i];if (a == 0) continue;for (int k = i; k < W(); k++) {B[j][k] -= B[i][k] * a;}}}return ret;}};/*** @brief 行列ライブラリ*/template <typename mint>struct FormalPowerSeries : vector<mint> {using vector<mint>::vector;using FPS = FormalPowerSeries;FPS &operator+=(const FPS &r) {if (r.size() > this->size()) this->resize(r.size());for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];return *this;}FPS &operator+=(const mint &r) {if (this->empty()) this->resize(1);(*this)[0] += r;return *this;}FPS &operator-=(const FPS &r) {if (r.size() > this->size()) this->resize(r.size());for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];return *this;}FPS &operator-=(const mint &r) {if (this->empty()) this->resize(1);(*this)[0] -= r;return *this;}FPS &operator*=(const mint &v) {for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;return *this;}FPS &operator/=(const FPS &r) {if (this->size() < r.size()) {this->clear();return *this;}int n = this->size() - r.size() + 1;if ((int)r.size() <= 64) {FPS f(*this), g(r);g.shrink();mint coeff = g.back().inverse();for (auto &x : g) x *= coeff;int deg = (int)f.size() - (int)g.size() + 1;int gs = g.size();FPS quo(deg);for (int i = deg - 1; i >= 0; i--) {quo[i] = f[i + gs - 1];for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];}*this = quo * coeff;this->resize(n, mint(0));return *this;}return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();}FPS &operator%=(const FPS &r) {*this -= *this / r * r;shrink();return *this;}FPS operator+(const FPS &r) const { return FPS(*this) += r; }FPS operator+(const mint &v) const { return FPS(*this) += v; }FPS operator-(const FPS &r) const { return FPS(*this) -= r; }FPS operator-(const mint &v) const { return FPS(*this) -= v; }FPS operator*(const FPS &r) const { return FPS(*this) *= r; }FPS operator*(const mint &v) const { return FPS(*this) *= v; }FPS operator/(const FPS &r) const { return FPS(*this) /= r; }FPS operator%(const FPS &r) const { return FPS(*this) %= r; }FPS operator-() const {FPS ret(this->size());for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];return ret;}void shrink() {while (this->size() && this->back() == mint(0)) this->pop_back();}FPS rev() const {FPS ret(*this);reverse(begin(ret), end(ret));return ret;}FPS dot(FPS r) const {FPS ret(min(this->size(), r.size()));for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];return ret;}FPS pre(int sz) const {return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));}FPS operator>>(int sz) const {if ((int)this->size() <= sz) return {};FPS ret(*this);ret.erase(ret.begin(), ret.begin() + sz);return ret;}FPS operator<<(int sz) const {FPS ret(*this);ret.insert(ret.begin(), sz, mint(0));return ret;}FPS diff() const {const int n = (int)this->size();FPS ret(max(0, n - 1));mint one(1), coeff(1);for (int i = 1; i < n; i++) {ret[i - 1] = (*this)[i] * coeff;coeff += one;}return ret;}FPS integral() const {const int n = (int)this->size();FPS ret(n + 1);ret[0] = mint(0);if (n > 0) ret[1] = mint(1);auto mod = mint::get_mod();for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];return ret;}mint eval(mint x) const {mint r = 0, w = 1;for (auto &v : *this) r += w * v, w *= x;return r;}FPS log(int deg = -1) const {assert((*this)[0] == mint(1));if (deg == -1) deg = (int)this->size();return (this->diff() * this->inv(deg)).pre(deg - 1).integral();}FPS pow(int64_t k, int deg = -1) const {const int n = (int)this->size();if (deg == -1) deg = n;if (k == 0) {FPS ret(deg);if (deg) ret[0] = 1;return ret;}for (int i = 0; i < n; i++) {if ((*this)[i] != mint(0)) {mint rev = mint(1) / (*this)[i];FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);ret *= (*this)[i].pow(k);ret = (ret << (i * k)).pre(deg);if ((int)ret.size() < deg) ret.resize(deg, mint(0));return ret;}if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));}return FPS(deg, mint(0));}static void *ntt_ptr;static void set_fft();FPS &operator*=(const FPS &r);void ntt();void intt();void ntt_doubling();static int ntt_pr();FPS inv(int deg = -1) const;FPS exp(int deg = -1) const;};template <typename mint>void *FormalPowerSeries<mint>::ntt_ptr = nullptr;/*** @brief 多項式/形式的冪級数ライブラリ* @docs docs/fps/formal-power-series.md*/template <typename mint>struct ProductTree {using fps = FormalPowerSeries<mint>;const vector<mint> &xs;vector<fps> buf;int N, xsz;vector<int> l, r;ProductTree(const vector<mint> &xs_) : xs(xs_), xsz(xs.size()) {N = 1;while (N < (int)xs.size()) N *= 2;buf.resize(2 * N);l.resize(2 * N, xs.size());r.resize(2 * N, xs.size());fps::set_fft();if (fps::ntt_ptr == nullptr)build();elsebuild_ntt();}void build() {for (int i = 0; i < xsz; i++) {l[i + N] = i;r[i + N] = i + 1;buf[i + N] = {-xs[i], 1};}for (int i = N - 1; i > 0; i--) {l[i] = l[(i << 1) | 0];r[i] = r[(i << 1) | 1];if (buf[(i << 1) | 0].empty())continue;else if (buf[(i << 1) | 1].empty())buf[i] = buf[(i << 1) | 0];elsebuf[i] = buf[(i << 1) | 0] * buf[(i << 1) | 1];}}void build_ntt() {fps f;f.reserve(N * 2);for (int i = 0; i < xsz; i++) {l[i + N] = i;r[i + N] = i + 1;buf[i + N] = {-xs[i] + 1, -xs[i] - 1};}for (int i = N - 1; i > 0; i--) {l[i] = l[(i << 1) | 0];r[i] = r[(i << 1) | 1];if (buf[(i << 1) | 0].empty())continue;else if (buf[(i << 1) | 1].empty())buf[i] = buf[(i << 1) | 0];else if (buf[(i << 1) | 0].size() == buf[(i << 1) | 1].size()) {buf[i] = buf[(i << 1) | 0];f.clear();copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]),back_inserter(f));buf[i].ntt_doubling();f.ntt_doubling();for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j];} else {buf[i] = buf[(i << 1) | 0];f.clear();copy(begin(buf[(i << 1) | 1]), end(buf[(i << 1) | 1]),back_inserter(f));buf[i].ntt_doubling();f.intt();f.resize(buf[i].size(), mint(0));f.ntt();for (int j = 0; j < (int)buf[i].size(); j++) buf[i][j] *= f[j];}}for (int i = 0; i < 2 * N; i++) {buf[i].intt();buf[i].shrink();}}};template <typename mint>vector<mint> InnerMultipointEvaluation(const FormalPowerSeries<mint> &f,const vector<mint> &xs,const ProductTree<mint> &ptree) {using fps = FormalPowerSeries<mint>;vector<mint> ret;ret.reserve(xs.size());auto rec = [&](auto self, fps a, int idx) {if (ptree.l[idx] == ptree.r[idx]) return;a %= ptree.buf[idx];if ((int)a.size() <= 64) {for (int i = ptree.l[idx]; i < ptree.r[idx]; i++)ret.push_back(a.eval(xs[i]));return;}self(self, a, (idx << 1) | 0);self(self, a, (idx << 1) | 1);};rec(rec, f, 1);return ret;}template <typename mint>vector<mint> MultipointEvaluation(const FormalPowerSeries<mint> &f,const vector<mint> &xs) {if(f.empty() || xs.empty()) return vector<mint>(xs.size(), mint(0));return InnerMultipointEvaluation(f, xs, ProductTree<mint>(xs));}/*** @brief Multipoint Evaluation*/template <class mint>FormalPowerSeries<mint> PolynomialInterpolation(const vector<mint> &xs,const vector<mint> &ys) {using fps = FormalPowerSeries<mint>;assert(xs.size() == ys.size());ProductTree<mint> ptree(xs);fps w = ptree.buf[1].diff();vector<mint> vs = InnerMultipointEvaluation<mint>(w, xs, ptree);auto rec = [&](auto self, int idx) -> fps {if (idx >= ptree.N) {if (idx - ptree.N < (int)xs.size())return {ys[idx - ptree.N] / vs[idx - ptree.N]};elsereturn {mint(1)};}if (ptree.buf[idx << 1 | 0].empty())return {};else if (ptree.buf[idx << 1 | 1].empty())return self(self, idx << 1 | 0);return self(self, idx << 1 | 0) * ptree.buf[idx << 1 | 1] +self(self, idx << 1 | 1) * ptree.buf[idx << 1 | 0];};return rec(rec, 1);}template <typename mint>FormalPowerSeries<mint> PolynomialMatrixDeterminant(const Matrix<FormalPowerSeries<mint>> &m) {int N = m.size();int deg = 0;for (int i = 0; i < N; ++i) deg += max<int>(1, m[i][i].size()) - 1;vector<mint> xs(deg + 1);vector<mint> ys(deg + 1);Matrix<mint> M(N);for (int x = 0; x <= deg; x++) {xs[x] = x;for (int i = 0; i < N; ++i)for (int j = 0; j < N; ++j) M[i][j] = m[i][j].eval(x);ys[x] = M.determinant();}return PolynomialInterpolation<mint>(xs, ys);}/*** @brief 多項式行列の行列式* @docs docs/matrix/polynomial-matrix-determinant.md*/template <typename T>struct MatrixTree {int n;Matrix<T> m;MatrixTree(int _n) : n(_n), m(_n) { assert(n > 0); }void add(int i, int j, const T& x) {if (i < n) m[i][i] += x;if (j < n) m[j][j] += x;if (i < n and j < n) {m[i][j] -= x;m[j][i] -= x;}}Matrix<T> get() const { return m; }template <typename U, typename = void>struct has_value_type : false_type {};template <typename U>struct has_value_type<U, typename conditional<false, typename U::value_type, void>::type>: true_type {};template <typename U = T,enable_if_t<has_value_type<U>::value, nullptr_t> = nullptr>T calc() {return PolynomialMatrixDeterminant(m);}template <typename U = T,enable_if_t<!has_value_type<U>::value, nullptr_t> = nullptr>T calc() {return m.determinant();}};/*** @brief 行列木定理(ラプラシアン行列)*/template <uint32_t mod>struct LazyMontgomeryModInt {using mint = LazyMontgomeryModInt;using i32 = int32_t;using u32 = uint32_t;using u64 = uint64_t;static constexpr u32 get_r() {u32 ret = mod;for (i32 i = 0; i < 4; ++i) ret *= 2 - mod * ret;return ret;}static constexpr u32 r = get_r();static constexpr u32 n2 = -u64(mod) % mod;static_assert(mod < (1 << 30), "invalid, mod >= 2 ^ 30");static_assert((mod & 1) == 1, "invalid, mod % 2 == 0");static_assert(r * mod == 1, "this code has bugs.");u32 a;constexpr LazyMontgomeryModInt() : a(0) {}constexpr LazyMontgomeryModInt(const int64_t &b): a(reduce(u64(b % mod + mod) * n2)){};static constexpr u32 reduce(const u64 &b) {return (b + u64(u32(b) * u32(-r)) * mod) >> 32;}constexpr mint &operator+=(const mint &b) {if (i32(a += b.a - 2 * mod) < 0) a += 2 * mod;return *this;}constexpr mint &operator-=(const mint &b) {if (i32(a -= b.a) < 0) a += 2 * mod;return *this;}constexpr mint &operator*=(const mint &b) {a = reduce(u64(a) * b.a);return *this;}constexpr mint &operator/=(const mint &b) {*this *= b.inverse();return *this;}constexpr mint operator+(const mint &b) const { return mint(*this) += b; }constexpr mint operator-(const mint &b) const { return mint(*this) -= b; }constexpr mint operator*(const mint &b) const { return mint(*this) *= b; }constexpr mint operator/(const mint &b) const { return mint(*this) /= b; }constexpr bool operator==(const mint &b) const {return (a >= mod ? a - mod : a) == (b.a >= mod ? b.a - mod : b.a);}constexpr bool operator!=(const mint &b) const {return (a >= mod ? a - mod : a) != (b.a >= mod ? b.a - mod : b.a);}constexpr mint operator-() const { return mint() - mint(*this); }constexpr mint operator+() const { return mint(*this); }constexpr mint pow(u64 n) const {mint ret(1), mul(*this);while (n > 0) {if (n & 1) ret *= mul;mul *= mul;n >>= 1;}return ret;}constexpr mint inverse() const {int x = get(), y = mod, u = 1, v = 0, t = 0, tmp = 0;while (y > 0) {t = x / y;x -= t * y, u -= t * v;tmp = x, x = y, y = tmp;tmp = u, u = v, v = tmp;}return mint{u};}friend ostream &operator<<(ostream &os, const mint &b) {return os << b.get();}friend istream &operator>>(istream &is, mint &b) {int64_t t;is >> t;b = LazyMontgomeryModInt<mod>(t);return (is);}constexpr u32 get() const {u32 ret = reduce(a);return ret >= mod ? ret - mod : ret;}static constexpr u32 get_mod() { return mod; }};using namespace std;// コンストラクタの MAX に 「C(n, r) や fac(n) でクエリを投げる最大の n 」// を入れると倍速くらいになる// mod を超えて前計算して 0 割りを踏むバグは対策済みtemplate <typename T>struct Binomial {vector<T> f, g, h;Binomial(int MAX = 0) {assert(T::get_mod() != 0 && "Binomial<mint>()");f.resize(1, T{1});g.resize(1, T{1});h.resize(1, T{1});if (MAX > 0) extend(MAX + 1);}void extend(int m = -1) {int n = f.size();if (m == -1) m = n * 2;m = min<int>(m, T::get_mod());if (n >= m) return;f.resize(m);g.resize(m);h.resize(m);for (int i = n; i < m; i++) f[i] = f[i - 1] * T(i);g[m - 1] = f[m - 1].inverse();h[m - 1] = g[m - 1] * f[m - 2];for (int i = m - 2; i >= n; i--) {g[i] = g[i + 1] * T(i + 1);h[i] = g[i] * f[i - 1];}}T fac(int i) {if (i < 0) return T(0);while (i >= (int)f.size()) extend();return f[i];}T finv(int i) {if (i < 0) return T(0);while (i >= (int)g.size()) extend();return g[i];}T inv(int i) {if (i < 0) return -inv(-i);while (i >= (int)h.size()) extend();return h[i];}T C(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);return fac(n) * finv(n - r) * finv(r);}inline T operator()(int n, int r) { return C(n, r); }template <typename I>T multinomial(const vector<I>& r) {static_assert(is_integral<I>::value == true);int n = 0;for (auto& x : r) {if (x < 0) return T(0);n += x;}T res = fac(n);for (auto& x : r) res *= finv(x);return res;}template <typename I>T operator()(const vector<I>& r) {return multinomial(r);}T C_naive(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);T ret = T(1);r = min(r, n - r);for (int i = 1; i <= r; ++i) ret *= inv(i) * (n--);return ret;}T P(int n, int r) {if (n < 0 || n < r || r < 0) return T(0);return fac(n) * finv(n - r);}// [x^r] 1 / (1-x)^nT H(int n, int r) {if (n < 0 || r < 0) return T(0);return r == 0 ? 1 : C(n + r - 1, r);}};//using namespace Nyaan;using mint = LazyMontgomeryModInt<998244353>;// using mint = LazyMontgomeryModInt<1000000007>;using vm = vector<mint>;using vvm = vector<vm>;Binomial<mint> C;using namespace Nyaan;void q() {inl(N, K);V<vp> es;rep(i, K) {ini(t);vp v(t);in(v);each2(a, b, v)-- a, --b;es.push_back(v);}mint ans = 0;rep(b, PW(K)) {MatrixTree<mint> tree(N - 1);rep(i, K) {if (!gbit(b, i)) continue;each2(u, v, es[i]) {trc(u, v);tree.add(u, v, 1);}}trc(tree.get());trc(tree.calc());ans += tree.calc() * ((K-popcnt(b))%2 ? -1 : 1);}out(ans);}void Nyaan::solve() {int t = 1;// in(t);while (t--) q();}