結果
問題 | No.2439 Fragile Apple Tree |
ユーザー | maspy |
提出日時 | 2023-08-18 22:12:01 |
言語 | C++23 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 35,803 bytes |
コンパイル時間 | 5,385 ms |
コンパイル使用メモリ | 329,672 KB |
実行使用メモリ | 73,072 KB |
最終ジャッジ日時 | 2024-11-28 07:40:31 |
合計ジャッジ時間 | 29,359 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | WA | - |
testcase_02 | WA | - |
testcase_03 | AC | 301 ms
73,072 KB |
testcase_04 | AC | 290 ms
73,072 KB |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | AC | 2 ms
5,248 KB |
testcase_10 | AC | 2 ms
5,248 KB |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | AC | 2 ms
5,248 KB |
testcase_13 | AC | 3 ms
5,248 KB |
testcase_14 | WA | - |
testcase_15 | WA | - |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | WA | - |
testcase_19 | WA | - |
testcase_20 | WA | - |
testcase_21 | WA | - |
testcase_22 | WA | - |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | WA | - |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | WA | - |
testcase_32 | WA | - |
ソースコード
#line 1 "/home/maspy/compro/library/my_template.hpp" #if defined(LOCAL) #include <my_template_compiled.hpp> #else #pragma GCC optimize("Ofast") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; using ll = long long; using u32 = unsigned int; using u64 = unsigned long long; using i128 = __int128; using u128 = unsigned __int128; using f128 = __float128; template <class T> constexpr T infty = 0; template <> constexpr int infty<int> = 1'000'000'000; template <> constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2; template <> constexpr u32 infty<u32> = infty<int>; template <> constexpr u64 infty<u64> = infty<ll>; template <> constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>; template <> constexpr double infty<double> = infty<ll>; template <> constexpr long double infty<long double> = infty<ll>; using pi = pair<ll, ll>; using vi = vector<ll>; template <class T> using vc = vector<T>; template <class T> using vvc = vector<vc<T>>; template <class T> using vvvc = vector<vvc<T>>; template <class T> using vvvvc = vector<vvvc<T>>; template <class T> using vvvvvc = vector<vvvvc<T>>; template <class T> using pq = priority_queue<T>; template <class T> using pqg = priority_queue<T, vector<T>, greater<T>>; #define vv(type, name, h, ...) \ vector<vector<type>> name(h, vector<type>(__VA_ARGS__)) #define vvv(type, name, h, w, ...) \ vector<vector<vector<type>>> name( \ h, vector<vector<type>>(w, vector<type>(__VA_ARGS__))) #define vvvv(type, name, a, b, c, ...) \ vector<vector<vector<vector<type>>>> name( \ a, vector<vector<vector<type>>>( \ b, vector<vector<type>>(c, vector<type>(__VA_ARGS__)))) // https://trap.jp/post/1224/ #define FOR1(a) for (ll _ = 0; _ < ll(a); ++_) #define FOR2(i, a) for (ll i = 0; i < ll(a); ++i) #define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i) #define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c)) #define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i) #define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i) #define overload4(a, b, c, d, e, ...) e #define overload3(a, b, c, d, ...) d #define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__) #define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__) #define FOR_subset(t, s) \ for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s))) #define all(x) x.begin(), x.end() #define len(x) ll(x.size()) #define elif else if #define eb emplace_back #define mp make_pair #define mt make_tuple #define fi first #define se second #define stoi stoll int popcnt(int x) { return __builtin_popcount(x); } int popcnt(u32 x) { return __builtin_popcount(x); } int popcnt(ll x) { return __builtin_popcountll(x); } int popcnt(u64 x) { return __builtin_popcountll(x); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2) int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); } int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); } // (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2) int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); } int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); } template <typename T, typename U> T ceil(T x, U y) { return (x > 0 ? (x + y - 1) / y : x / y); } template <typename T, typename U> T floor(T x, U y) { return (x > 0 ? x / y : (x - y + 1) / y); } template <typename T, typename U> pair<T, T> divmod(T x, U y) { T q = floor(x, y); return {q, x - q * y}; } template <typename T, typename U> T SUM(const vector<U> &A) { T sum = 0; for (auto &&a: A) sum += a; return sum; } #define MIN(v) *min_element(all(v)) #define MAX(v) *max_element(all(v)) #define LB(c, x) distance((c).begin(), lower_bound(all(c), (x))) #define UB(c, x) distance((c).begin(), upper_bound(all(c), (x))) #define UNIQUE(x) \ sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit() template <typename T> T POP(deque<T> &que) { T a = que.front(); que.pop_front(); return a; } template <typename T> T POP(pq<T> &que) { T a = que.top(); que.pop(); return a; } template <typename T> T POP(pqg<T> &que) { assert(!que.empty()); T a = que.top(); que.pop(); return a; } template <typename T> T POP(vc<T> &que) { assert(!que.empty()); T a = que.back(); que.pop_back(); return a; } template <typename F> ll binary_search(F check, ll ok, ll ng, bool check_ok = true) { if (check_ok) assert(check(ok)); while (abs(ok - ng) > 1) { auto x = (ng + ok) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return ok; } template <typename F> double binary_search_real(F check, double ok, double ng, int iter = 100) { FOR(iter) { double x = (ok + ng) / 2; tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x)); } return (ok + ng) / 2; } template <class T, class S> inline bool chmax(T &a, const S &b) { return (a < b ? a = b, 1 : 0); } template <class T, class S> inline bool chmin(T &a, const S &b) { return (a > b ? a = b, 1 : 0); } // ? は -1 vc<int> s_to_vi(const string &S, char first_char) { vc<int> A(S.size()); FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); } return A; } template <typename T, typename U> vector<T> cumsum(vector<U> &A, int off = 1) { int N = A.size(); vector<T> B(N + 1); FOR(i, N) { B[i + 1] = B[i] + A[i]; } if (off == 0) B.erase(B.begin()); return B; } // stable sort template <typename T> vector<int> argsort(const vector<T> &A) { vector<int> ids(len(A)); iota(all(ids), 0); sort(all(ids), [&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); }); return ids; } // A[I[0]], A[I[1]], ... template <typename T> vc<T> rearrange(const vc<T> &A, const vc<int> &I) { vc<T> B(len(I)); FOR(i, len(I)) B[i] = A[I[i]]; return B; } #endif #line 1 "/home/maspy/compro/library/other/io.hpp" // based on yosupo's fastio #include <unistd.h> namespace fastio { #define FASTIO // クラスが read(), print() を持っているかを判定するメタ関数 struct has_write_impl { template <class T> static auto check(T &&x) -> decltype(x.write(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) { }; struct has_read_impl { template <class T> static auto check(T &&x) -> decltype(x.read(), std::true_type{}); template <class T> static auto check(...) -> std::false_type; }; template <class T> class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {}; struct Scanner { FILE *fp; char line[(1 << 15) + 1]; size_t st = 0, ed = 0; void reread() { memmove(line, line + st, ed - st); ed -= st; st = 0; ed += fread(line + ed, 1, (1 << 15) - ed, fp); line[ed] = '\0'; } bool succ() { while (true) { if (st == ed) { reread(); if (st == ed) return false; } while (st != ed && isspace(line[st])) st++; if (st != ed) break; } if (ed - st <= 50) { bool sep = false; for (size_t i = st; i < ed; i++) { if (isspace(line[i])) { sep = true; break; } } if (!sep) reread(); } return true; } template <class T, enable_if_t<is_same<T, string>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; while (true) { size_t sz = 0; while (st + sz < ed && !isspace(line[st + sz])) sz++; ref.append(line + st, sz); st += sz; if (!sz || st != ed) break; reread(); } return true; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> bool read_single(T &ref) { if (!succ()) return false; bool neg = false; if (line[st] == '-') { neg = true; st++; } ref = T(0); while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); } if (neg) ref = -ref; return true; } template <typename T, typename enable_if<has_read<T>::value>::type * = nullptr> inline bool read_single(T &x) { x.read(); return true; } bool read_single(double &ref) { string s; if (!read_single(s)) return false; ref = std::stod(s); return true; } bool read_single(char &ref) { string s; if (!read_single(s) || s.size() != 1) return false; ref = s[0]; return true; } template <class T> bool read_single(vector<T> &ref) { for (auto &d: ref) { if (!read_single(d)) return false; } return true; } template <class T, class U> bool read_single(pair<T, U> &p) { return (read_single(p.first) && read_single(p.second)); } template <size_t N = 0, typename T> void read_single_tuple(T &t) { if constexpr (N < std::tuple_size<T>::value) { auto &x = std::get<N>(t); read_single(x); read_single_tuple<N + 1>(t); } } template <class... T> bool read_single(tuple<T...> &tpl) { read_single_tuple(tpl); return true; } void read() {} template <class H, class... T> void read(H &h, T &... t) { bool f = read_single(h); assert(f); read(t...); } Scanner(FILE *fp) : fp(fp) {} }; struct Printer { Printer(FILE *_fp) : fp(_fp) {} ~Printer() { flush(); } static constexpr size_t SIZE = 1 << 15; FILE *fp; char line[SIZE], small[50]; size_t pos = 0; void flush() { fwrite(line, 1, pos, fp); pos = 0; } void write(const char val) { if (pos == SIZE) flush(); line[pos++] = val; } template <class T, enable_if_t<is_integral<T>::value, int> = 0> void write(T val) { if (pos > (1 << 15) - 50) flush(); if (val == 0) { write('0'); return; } if (val < 0) { write('-'); val = -val; // todo min } size_t len = 0; while (val) { small[len++] = char(0x30 | (val % 10)); val /= 10; } for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; } pos += len; } void write(const string s) { for (char c: s) write(c); } void write(const char *s) { size_t len = strlen(s); for (size_t i = 0; i < len; i++) write(s[i]); } void write(const double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } void write(const long double x) { ostringstream oss; oss << fixed << setprecision(15) << x; string s = oss.str(); write(s); } template <typename T, typename enable_if<has_write<T>::value>::type * = nullptr> inline void write(T x) { x.write(); } template <class T> void write(const vector<T> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } template <class T, class U> void write(const pair<T, U> val) { write(val.first); write(' '); write(val.second); } template <size_t N = 0, typename T> void write_tuple(const T t) { if constexpr (N < std::tuple_size<T>::value) { if constexpr (N > 0) { write(' '); } const auto x = std::get<N>(t); write(x); write_tuple<N + 1>(t); } } template <class... T> bool write(tuple<T...> tpl) { write_tuple(tpl); return true; } template <class T, size_t S> void write(const array<T, S> val) { auto n = val.size(); for (size_t i = 0; i < n; i++) { if (i) write(' '); write(val[i]); } } void write(i128 val) { string s; bool negative = 0; if (val < 0) { negative = 1; val = -val; } while (val) { s += '0' + int(val % 10); val /= 10; } if (negative) s += "-"; reverse(all(s)); if (len(s) == 0) s = "0"; write(s); } }; Scanner scanner = Scanner(stdin); Printer printer = Printer(stdout); void flush() { printer.flush(); } void print() { printer.write('\n'); } template <class Head, class... Tail> void print(Head &&head, Tail &&... tail) { printer.write(head); if (sizeof...(Tail)) printer.write(' '); print(forward<Tail>(tail)...); } void read() {} template <class Head, class... Tail> void read(Head &head, Tail &... tail) { scanner.read(head); read(tail...); } } // namespace fastio using fastio::print; using fastio::flush; using fastio::read; #define INT(...) \ int __VA_ARGS__; \ read(__VA_ARGS__) #define LL(...) \ ll __VA_ARGS__; \ read(__VA_ARGS__) #define STR(...) \ string __VA_ARGS__; \ read(__VA_ARGS__) #define CHAR(...) \ char __VA_ARGS__; \ read(__VA_ARGS__) #define DBL(...) \ double __VA_ARGS__; \ read(__VA_ARGS__) #define VEC(type, name, size) \ vector<type> name(size); \ read(name) #define VV(type, name, h, w) \ vector<vector<type>> name(h, vector<type>(w)); \ read(name) void YES(bool t = 1) { print(t ? "YES" : "NO"); } void NO(bool t = 1) { YES(!t); } void Yes(bool t = 1) { print(t ? "Yes" : "No"); } void No(bool t = 1) { Yes(!t); } void yes(bool t = 1) { print(t ? "yes" : "no"); } void no(bool t = 1) { yes(!t); } #line 2 "/home/maspy/compro/library/ds/segtree/lazy_segtree.hpp" template <typename ActedMonoid> struct Lazy_SegTree { using AM = ActedMonoid; using MX = typename AM::Monoid_X; using MA = typename AM::Monoid_A; using X = typename MX::value_type; using A = typename MA::value_type; int n, log, size; vc<X> dat; vc<A> laz; Lazy_SegTree() {} Lazy_SegTree(int n) { build(n); } template <typename F> Lazy_SegTree(int n, F f) { build(n, f); } Lazy_SegTree(const vc<X>& v) { build(v); } void build(int m) { build(m, [](int i) -> X { return MX::unit(); }); } void build(const vc<X>& v) { build(len(v), [&](int i) -> X { return v[i]; }); } template <typename F> void build(int m, F f) { n = m, log = 1; while ((1 << log) < n) ++log; size = 1 << log; dat.assign(size << 1, MX::unit()); laz.assign(size, MA::unit()); FOR(i, n) dat[size + i] = f(i); FOR_R(i, 1, size) update(i); } void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); } void set(int p, X x) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); dat[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } void multiply(int p, const X& x) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); dat[p] = MX::op(dat[p], x); for (int i = 1; i <= log; i++) update(p >> i); } X get(int p) { assert(0 <= p && p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return dat[p]; } vc<X> get_all() { FOR(k, 1, size) { push(k); } return {dat.begin() + size, dat.begin() + size + n}; } X prod(int l, int r) { assert(0 <= l && l <= r && r <= n); if (l == r) return MX::unit(); l += size, r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } X xl = MX::unit(), xr = MX::unit(); while (l < r) { if (l & 1) xl = MX::op(xl, dat[l++]); if (r & 1) xr = MX::op(dat[--r], xr); l >>= 1, r >>= 1; } return MX::op(xl, xr); } X prod_all() { return dat[1]; } void apply(int l, int r, A a) { assert(0 <= l && l <= r && r <= n); if (l == r) return; l += size, r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } int l2 = l, r2 = r; while (l < r) { if (l & 1) apply_at(l++, a); if (r & 1) apply_at(--r, a); l >>= 1, r >>= 1; } l = l2, r = r2; for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <typename F> int max_right(const F check, int l) { assert(0 <= l && l <= n); assert(check(MX::unit())); if (l == n) return n; l += size; for (int i = log; i >= 1; i--) push(l >> i); X sm = MX::unit(); do { while (l % 2 == 0) l >>= 1; if (!check(MX::op(sm, dat[l]))) { while (l < size) { push(l); l = (2 * l); if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); } } return l - size; } sm = MX::op(sm, dat[l++]); } while ((l & -l) != l); return n; } template <typename F> int min_left(const F check, int r) { assert(0 <= r && r <= n); assert(check(MX::unit())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); X sm = MX::unit(); do { r--; while (r > 1 && (r % 2)) r >>= 1; if (!check(MX::op(dat[r], sm))) { while (r < size) { push(r); r = (2 * r + 1); if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); } } return r + 1 - size; } sm = MX::op(dat[r], sm); } while ((r & -r) != r); return 0; } private: void apply_at(int k, A a) { ll sz = 1 << (log - topbit(k)); dat[k] = AM::act(dat[k], a, sz); if (k < size) laz[k] = MA::op(laz[k], a); } void push(int k) { if (laz[k] == MA::unit()) return; apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]); laz[k] = MA::unit(); } }; #line 2 "/home/maspy/compro/library/graph/tree.hpp" #line 2 "/home/maspy/compro/library/graph/base.hpp" template <typename T> struct Edge { int frm, to; T cost; int id; }; template <typename T = int, bool directed = false> struct Graph { int N, M; using cost_type = T; using edge_type = Edge<T>; vector<edge_type> edges; vector<int> indptr; vector<edge_type> csr_edges; vc<int> vc_deg, vc_indeg, vc_outdeg; bool prepared; class OutgoingEdges { public: OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {} const edge_type* begin() const { if (l == r) { return 0; } return &G->csr_edges[l]; } const edge_type* end() const { if (l == r) { return 0; } return &G->csr_edges[r]; } private: const Graph* G; int l, r; }; bool is_prepared() { return prepared; } constexpr bool is_directed() { return directed; } Graph() : N(0), M(0), prepared(0) {} Graph(int N) : N(N), M(0), prepared(0) {} void build(int n) { N = n, M = 0; prepared = 0; edges.clear(); indptr.clear(); csr_edges.clear(); vc_deg.clear(); vc_indeg.clear(); vc_outdeg.clear(); } void add(int frm, int to, T cost = 1, int i = -1) { assert(!prepared); assert(0 <= frm && 0 <= to && to < N); if (i == -1) i = M; auto e = edge_type({frm, to, cost, i}); edges.eb(e); ++M; } // wt, off void read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); } void read_graph(int M, bool wt = false, int off = 1) { for (int m = 0; m < M; ++m) { INT(a, b); a -= off, b -= off; if (!wt) { add(a, b); } else { T c; read(c); add(a, b, c); } } build(); } void build() { assert(!prepared); prepared = true; indptr.assign(N + 1, 0); for (auto&& e: edges) { indptr[e.frm + 1]++; if (!directed) indptr[e.to + 1]++; } for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; } auto counter = indptr; csr_edges.resize(indptr.back() + 1); for (auto&& e: edges) { csr_edges[counter[e.frm]++] = e; if (!directed) csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id}); } } OutgoingEdges operator[](int v) const { assert(prepared); return {this, indptr[v], indptr[v + 1]}; } vc<int> deg_array() { if (vc_deg.empty()) calc_deg(); return vc_deg; } pair<vc<int>, vc<int>> deg_array_inout() { if (vc_indeg.empty()) calc_deg_inout(); return {vc_indeg, vc_outdeg}; } int deg(int v) { if (vc_deg.empty()) calc_deg(); return vc_deg[v]; } int in_deg(int v) { if (vc_indeg.empty()) calc_deg_inout(); return vc_indeg[v]; } int out_deg(int v) { if (vc_outdeg.empty()) calc_deg_inout(); return vc_outdeg[v]; } void debug() { print("Graph"); if (!prepared) { print("frm to cost id"); for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id); } else { print("indptr", indptr); print("frm to cost id"); FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id); } } vc<int> new_idx; vc<bool> used_e; // G における頂点 V[i] が、新しいグラフで i になるようにする // {G, es} pair<Graph<T, directed>, vc<int>> rearrange(vc<int> V) { if (len(new_idx) != N) new_idx.assign(N, -1); if (len(used_e) != M) used_e.assign(M, 0); int n = len(V); FOR(i, n) new_idx[V[i]] = i; Graph<T, directed> G(n); vc<int> es; FOR(i, n) { for (auto&& e: (*this)[V[i]]) { if (used_e[e.id]) continue; int a = e.frm, b = e.to; if (new_idx[a] != -1 && new_idx[b] != -1) { used_e[e.id] = 1; G.add(new_idx[a], new_idx[b], e.cost); es.eb(e.id); } } } FOR(i, n) new_idx[V[i]] = -1; for (auto&& eid: es) used_e[eid] = 0; G.build(); return {G, es}; } private: void calc_deg() { assert(vc_deg.empty()); vc_deg.resize(N); for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++; } void calc_deg_inout() { assert(vc_indeg.empty()); vc_indeg.resize(N); vc_outdeg.resize(N); for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; } } }; #line 4 "/home/maspy/compro/library/graph/tree.hpp" // HLD euler tour をとっていろいろ。 // 木以外、非連結でも dfs 順序や親がとれる。 template <typename GT> struct Tree { using Graph_type = GT; GT &G; using WT = typename GT::cost_type; int N; vector<int> LID, RID, head, V, parent, VtoE; vc<int> depth; vc<WT> depth_weighted; Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); } void build(int r = 0, bool hld = 1) { if (r == -1) return; // build を遅延したいとき N = G.N; LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r); V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1); depth.assign(N, -1), depth_weighted.assign(N, 0); assert(G.is_prepared()); int t1 = 0; dfs_sz(r, -1, hld); dfs_hld(r, t1); } void dfs_sz(int v, int p, bool hld) { auto &sz = RID; parent[v] = p; depth[v] = (p == -1 ? 0 : depth[p] + 1); sz[v] = 1; int l = G.indptr[v], r = G.indptr[v + 1]; auto &csr = G.csr_edges; // 使う辺があれば先頭にする for (int i = r - 2; i >= l; --i) { if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]); } int hld_sz = 0; for (int i = l; i < r; ++i) { auto e = csr[i]; if (depth[e.to] != -1) continue; depth_weighted[e.to] = depth_weighted[v] + e.cost; VtoE[e.to] = e.id; dfs_sz(e.to, v, hld); sz[v] += sz[e.to]; if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); } } } void dfs_hld(int v, int ×) { LID[v] = times++; RID[v] += LID[v]; V[LID[v]] = v; bool heavy = true; for (auto &&e: G[v]) { if (depth[e.to] <= depth[v]) continue; head[e.to] = (heavy ? head[v] : e.to); heavy = false; dfs_hld(e.to, times); } } vc<int> heavy_path_at(int v) { vc<int> P = {v}; while (1) { int a = P.back(); for (auto &&e: G[a]) { if (e.to != parent[a] && head[e.to] == v) { P.eb(e.to); break; } } if (P.back() == a) break; } return P; } int heavy_child(int v) { int k = LID[v] + 1; if (k == N) return -1; int w = V[k]; return (parent[w] == v ? w : -1); } int e_to_v(int eid) { auto e = G.edges[eid]; return (parent[e.frm] == e.to ? e.frm : e.to); } int v_to_e(int v) { return VtoE[v]; } int ELID(int v) { return 2 * LID[v] - depth[v]; } int ERID(int v) { return 2 * RID[v] - depth[v] - 1; } /* k: 0-indexed */ int LA(int v, int k) { assert(k <= depth[v]); while (1) { int u = head[v]; if (LID[v] - k >= LID[u]) return V[LID[v] - k]; k -= LID[v] - LID[u] + 1; v = parent[u]; } } int la(int u, int v) { return LA(u, v); } int LCA(int u, int v) { for (;; v = parent[head[v]]) { if (LID[u] > LID[v]) swap(u, v); if (head[u] == head[v]) return u; } } // root を根とした場合の lca int LCA_root(int u, int v, int root) { return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root); } int lca(int u, int v) { return LCA(u, v); } int lca_root(int u, int v, int root) { return LCA_root(u, v, root); } int subtree_size(int v, int root = -1) { if (root == -1) return RID[v] - LID[v]; if (v == root) return N; int x = jump(v, root, 1); if (in_subtree(v, x)) return RID[v] - LID[v]; return N - RID[x] + LID[x]; } int dist(int a, int b) { int c = LCA(a, b); return depth[a] + depth[b] - 2 * depth[c]; } WT dist_weighted(int a, int b) { int c = LCA(a, b); return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c]; } // a is in b bool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; } int jump(int a, int b, ll k) { if (k == 1) { if (a == b) return -1; return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]); } int c = LCA(a, b); int d_ac = depth[a] - depth[c]; int d_bc = depth[b] - depth[c]; if (k > d_ac + d_bc) return -1; if (k <= d_ac) return LA(a, k); return LA(b, d_ac + d_bc - k); } vc<int> collect_child(int v) { vc<int> res; for (auto &&e: G[v]) if (e.to != parent[v]) res.eb(e.to); return res; } vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) { // [始点, 終点] の"閉"区間列。 vc<pair<int, int>> up, down; while (1) { if (head[u] == head[v]) break; if (LID[u] < LID[v]) { down.eb(LID[head[v]], LID[v]); v = parent[head[v]]; } else { up.eb(LID[u], LID[head[u]]); u = parent[head[u]]; } } if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]); elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge); reverse(all(down)); up.insert(up.end(), all(down)); return up; } vc<int> restore_path(int u, int v) { vc<int> P; for (auto &&[a, b]: get_path_decomposition(u, v, 0)) { if (a <= b) { FOR(i, a, b + 1) P.eb(V[i]); } else { FOR_R(i, b, a + 1) P.eb(V[i]); } } return P; } }; #line 3 "/home/maspy/compro/library/graph/ds/lazy_tree_monoid.hpp" template <typename TREE, typename ActedMonoid, bool edge> struct Lazy_Tree_Monoid { using MX = typename ActedMonoid::Monoid_X; using MA = typename ActedMonoid::Monoid_A; static_assert(MX::commute); using X = typename MX::value_type; using A = typename MA::value_type; TREE &tree; int N; Lazy_SegTree<ActedMonoid> seg; Lazy_Tree_Monoid(TREE &tree) : tree(tree), N(tree.N) { build([](int i) -> X { return MX::unit(); }); } Lazy_Tree_Monoid(TREE &tree, vc<X> &dat) : tree(tree), N(tree.N) { build([&](int i) -> X { return dat[i]; }); } template <typename F> Lazy_Tree_Monoid(TREE &tree, F f) : tree(tree), N(tree.N) { build(f); } template <typename F> void build(F f) { vc<X> seg_raw(N, MX::unit()); if (!edge) { seg.build(N, [&](int i) -> X { return f(tree.V[i]); }); } else { seg.build(N, [&](int i) -> X { return (i == 0 ? MX::unit() : f(tree.v_to_e(tree.V[i]))); }); } } void set(int i, X x) { if constexpr (edge) i = tree.e_to_v(i); i = tree.LID[i]; seg.set(i, x); } X get(int v) { return seg.get(tree.LID[v]); } vc<X> get_all() { static_assert(!edge); // 単に未実装なので vc<X> dat = seg.get_all(); vc<X> res(N); FOR(v, N) res[v] = dat[tree.LID[v]]; return res; } X prod_path(int u, int v) { auto pd = tree.get_path_decomposition(u, v, edge); X val = MX::unit(); for (auto &&[a, b]: pd) { X x = get_prod(a, b); val = MX::op(val, x); } return val; } X prod_subtree(int u) { int l = tree.LID[u], r = tree.RID[u]; return seg.prod(l + edge, r); } X prod_all() { return seg.prod_all(); } void apply_path(int u, int v, A a) { auto pd = tree.get_path_decomposition(u, v, edge); for (auto &&[x, y]: pd) { int l = min(x, y), r = max(x, y); seg.apply(l, r + 1, a); } } void apply_subtree(int u, A a) { int l = tree.LID[u], r = tree.RID[u]; return seg.apply(l + edge, r, a); } template <class F> int max_path(F check, int u, int v) { if constexpr (edge) return max_path_edge(check, u, v); if (!check(prod_path(u, u))) return -1; auto pd = tree.get_path_decomposition(u, v, edge); X val = MX::unit(); for (auto &&[a, b]: pd) { X x = get_prod(a, b); if (check(MX::op(val, x))) { val = MX::op(val, x); u = (tree.V[b]); continue; } auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); }; if (a <= b) { // 下り auto i = seg.max_right(check_tmp, a); return (i == a ? u : tree.V[i - 1]); } else { // 上り auto i = seg.min_left(check_tmp, a + 1); if (i == a + 1) return u; return tree.V[i]; } } return v; } // closed range [a,b] を heavy path の形式に応じて inline X get_prod(int a, int b) { return (a <= b ? seg.prod(a, b + 1) : seg.prod(b, a + 1)); } private: template <class F> int max_path_edge(F &check, int u, int v) { assert(edge); if (!check(MX::unit())) return -1; int lca = tree.lca(u, v); auto pd = tree.get_path_decomposition(u, lca, edge); X val = MX::unit(); // climb for (auto &&[a, b]: pd) { assert(a >= b); X x = seg.prod(b, a + 1); if (check(MX::op(val, x))) { val = MX::op(val, x); u = (tree.parent[tree.V[b]]); continue; } auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); }; auto i = seg.min_left(check_tmp, a + 1); if (i == a + 1) return u; return tree.parent[tree.V[i]]; } // down pd = tree.get_path_decomposition(lca, v, edge); for (auto &&[a, b]: pd) { assert(a <= b); X x = seg.prod(a, b + 1); if (check(MX::op(val, x))) { val = MX::op(val, x); u = (tree.V[b]); continue; } auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); }; auto i = seg.max_right(check_tmp, a); return (i == a ? u : tree.V[i - 1]); } return v; } }; #line 2 "/home/maspy/compro/library/alg/monoid/add.hpp" template <typename X> struct Monoid_Add { using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return x + y; } static constexpr X inverse(const X &x) noexcept { return -x; } static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; } static constexpr X unit() { return X(0); } static constexpr bool commute = true; }; #line 2 "/home/maspy/compro/library/alg/monoid/min.hpp" template <typename E> struct Monoid_Min { using X = E; using value_type = X; static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); } static constexpr X unit() { return infty<E>; } static constexpr bool commute = true; }; #line 3 "/home/maspy/compro/library/alg/acted_monoid/min_add.hpp" template <typename E> struct ActedMonoid_Min_Add { using Monoid_X = Monoid_Min<E>; using Monoid_A = Monoid_Add<E>; using X = typename Monoid_X::value_type; using A = typename Monoid_A::value_type; static constexpr X act(const X &x, const A &a, const ll &size) { if (x == infty<E>) return x; return x + a; } }; #line 1 "/home/maspy/compro/library/ds/fastset.hpp" /* 64分木。 insert, erase []での存在判定 next, prev */ struct FastSet { using uint = unsigned; using ull = unsigned long long; int bsr(ull x) { return 63 - __builtin_clzll(x); } int bsf(ull x) { return __builtin_ctzll(x); } static constexpr uint B = 64; int n, lg; vector<vector<ull>> seg; FastSet(int _n) : n(_n) { do { seg.push_back(vector<ull>((_n + B - 1) / B)); _n = (_n + B - 1) / B; } while (_n > 1); lg = int(seg.size()); } bool operator[](int i) const { return (seg[0][i / B] >> (i % B) & 1) != 0; } void insert(int i) { for (int h = 0; h < lg; h++) { seg[h][i / B] |= 1ULL << (i % B); i /= B; } } void add(int i) { insert(i); } void erase(int i) { for (int h = 0; h < lg; h++) { seg[h][i / B] &= ~(1ULL << (i % B)); if (seg[h][i / B]) break; i /= B; } } void remove(int i) { erase(i); } // x以上最小の要素を返す。存在しなければ n。 int next(int i) { chmax(i, 0); if (i >= n) return n; for (int h = 0; h < lg; h++) { if (i / B == seg[h].size()) break; ull d = seg[h][i / B] >> (i % B); if (!d) { i = i / B + 1; continue; } // find i += bsf(d); for (int g = h - 1; g >= 0; g--) { i *= B; i += bsf(seg[g][i / B]); } return i; } return n; } // x以下最大の要素を返す。存在しなければ -1。 int prev(int i) { if (i < 0) return -1; if (i >= n) i = n - 1; for (int h = 0; h < lg; h++) { if (i == -1) break; ull d = seg[h][i / B] << (63 - i % 64); if (!d) { i = i / B - 1; continue; } // find i += bsr(d) - (B - 1); for (int g = h - 1; g >= 0; g--) { i *= B; i += bsr(seg[g][i / B]); } return i; } return -1; } // [l, r) template <typename F> void enumerate(int l, int r, F f) { int x = l - 1; while (1) { x = next(x + 1); if (x >= r) break; f(x); } } void debug() { string s; for (int i = 0; i < n; ++i) s += ((*this)[i] ? '1' : '0'); print(s); } }; #line 6 "main.cpp" void solve() { LL(N, Q); Graph<int, 0> G(N); G.read_tree(1); Tree<decltype(G)> tree(G); vi cap(N); cap[0] = infty<ll>; for (auto&& e: G.edges) { int a = e.frm, b = e.to, c = e.cost; if (tree.parent[b] == a) swap(a, b); cap[a] = c; } using AM = ActedMonoid_Min_Add<ll>; Lazy_Tree_Monoid<decltype(tree), AM, false> seg(tree, cap); FastSet ss(N); FOR(i, N) ss.insert(i); vi put(N); ll now = N; auto remove = [&](int v) -> void { int L = tree.LID[v], R = tree.RID[v]; ss.enumerate(L, R, [&](int i) -> void { ss.erase(i); int v = tree.V[i]; // print("remove", v); seg.apply_path(0, v, +put[v]); seg.set(v, infty<ll>); --now; }); }; FOR(Q) { LL(t); // print(seg.get_all()); if (t == 1) { LL(v, x); --v; put[v] += x; seg.apply_path(v, 0, -x); if (seg.get(v) <= 0) { remove(v); continue; } int w = seg.max_path([&](auto e) -> bool { return e > 0; }, v, 0); if (w == 0) continue; w = tree.parent[w]; remove(w); } if (t == 2) { print(now); } } } signed main() { int T = 1; // INT(T); FOR(T) solve(); return 0; }