結果
問題 | No.2439 Fragile Apple Tree |
ユーザー |
![]() |
提出日時 | 2023-08-18 22:13:22 |
言語 | C++23 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 1,492 ms / 10,000 ms |
コード長 | 35,801 bytes |
コンパイル時間 | 6,485 ms |
コンパイル使用メモリ | 327,164 KB |
実行使用メモリ | 82,420 KB |
最終ジャッジ日時 | 2024-11-28 12:39:01 |
合計ジャッジ時間 | 25,574 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
sample | AC * 3 |
other | AC * 30 |
ソースコード
#line 1 "/home/maspy/compro/library/my_template.hpp"#if defined(LOCAL)#include <my_template_compiled.hpp>#else#pragma GCC optimize("Ofast")#pragma GCC optimize("unroll-loops")#include <bits/stdc++.h>using namespace std;using ll = long long;using u32 = unsigned int;using u64 = unsigned long long;using i128 = __int128;using u128 = unsigned __int128;using f128 = __float128;template <class T>constexpr T infty = 0;template <>constexpr int infty<int> = 1'000'000'000;template <>constexpr ll infty<ll> = ll(infty<int>) * infty<int> * 2;template <>constexpr u32 infty<u32> = infty<int>;template <>constexpr u64 infty<u64> = infty<ll>;template <>constexpr i128 infty<i128> = i128(infty<ll>) * infty<ll>;template <>constexpr double infty<double> = infty<ll>;template <>constexpr long double infty<long double> = infty<ll>;using pi = pair<ll, ll>;using vi = vector<ll>;template <class T>using vc = vector<T>;template <class T>using vvc = vector<vc<T>>;template <class T>using vvvc = vector<vvc<T>>;template <class T>using vvvvc = vector<vvvc<T>>;template <class T>using vvvvvc = vector<vvvvc<T>>;template <class T>using pq = priority_queue<T>;template <class T>using pqg = priority_queue<T, vector<T>, greater<T>>;#define vv(type, name, h, ...) \vector<vector<type>> name(h, vector<type>(__VA_ARGS__))#define vvv(type, name, h, w, ...) \vector<vector<vector<type>>> name( \h, vector<vector<type>>(w, vector<type>(__VA_ARGS__)))#define vvvv(type, name, a, b, c, ...) \vector<vector<vector<vector<type>>>> name( \a, vector<vector<vector<type>>>( \b, vector<vector<type>>(c, vector<type>(__VA_ARGS__))))// https://trap.jp/post/1224/#define FOR1(a) for (ll _ = 0; _ < ll(a); ++_)#define FOR2(i, a) for (ll i = 0; i < ll(a); ++i)#define FOR3(i, a, b) for (ll i = a; i < ll(b); ++i)#define FOR4(i, a, b, c) for (ll i = a; i < ll(b); i += (c))#define FOR1_R(a) for (ll i = (a)-1; i >= ll(0); --i)#define FOR2_R(i, a) for (ll i = (a)-1; i >= ll(0); --i)#define FOR3_R(i, a, b) for (ll i = (b)-1; i >= ll(a); --i)#define overload4(a, b, c, d, e, ...) e#define overload3(a, b, c, d, ...) d#define FOR(...) overload4(__VA_ARGS__, FOR4, FOR3, FOR2, FOR1)(__VA_ARGS__)#define FOR_R(...) overload3(__VA_ARGS__, FOR3_R, FOR2_R, FOR1_R)(__VA_ARGS__)#define FOR_subset(t, s) \for (ll t = (s); t >= 0; t = (t == 0 ? -1 : (t - 1) & (s)))#define all(x) x.begin(), x.end()#define len(x) ll(x.size())#define elif else if#define eb emplace_back#define mp make_pair#define mt make_tuple#define fi first#define se second#define stoi stollint popcnt(int x) { return __builtin_popcount(x); }int popcnt(u32 x) { return __builtin_popcount(x); }int popcnt(ll x) { return __builtin_popcountll(x); }int popcnt(u64 x) { return __builtin_popcountll(x); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 1, 2)int topbit(int x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(u32 x) { return (x == 0 ? -1 : 31 - __builtin_clz(x)); }int topbit(ll x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }int topbit(u64 x) { return (x == 0 ? -1 : 63 - __builtin_clzll(x)); }// (0, 1, 2, 3, 4) -> (-1, 0, 1, 0, 2)int lowbit(int x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(u32 x) { return (x == 0 ? -1 : __builtin_ctz(x)); }int lowbit(ll x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }int lowbit(u64 x) { return (x == 0 ? -1 : __builtin_ctzll(x)); }template <typename T, typename U>T ceil(T x, U y) {return (x > 0 ? (x + y - 1) / y : x / y);}template <typename T, typename U>T floor(T x, U y) {return (x > 0 ? x / y : (x - y + 1) / y);}template <typename T, typename U>pair<T, T> divmod(T x, U y) {T q = floor(x, y);return {q, x - q * y};}template <typename T, typename U>T SUM(const vector<U> &A) {T sum = 0;for (auto &&a: A) sum += a;return sum;}#define MIN(v) *min_element(all(v))#define MAX(v) *max_element(all(v))#define LB(c, x) distance((c).begin(), lower_bound(all(c), (x)))#define UB(c, x) distance((c).begin(), upper_bound(all(c), (x)))#define UNIQUE(x) \sort(all(x)), x.erase(unique(all(x)), x.end()), x.shrink_to_fit()template <typename T>T POP(deque<T> &que) {T a = que.front();que.pop_front();return a;}template <typename T>T POP(pq<T> &que) {T a = que.top();que.pop();return a;}template <typename T>T POP(pqg<T> &que) {assert(!que.empty());T a = que.top();que.pop();return a;}template <typename T>T POP(vc<T> &que) {assert(!que.empty());T a = que.back();que.pop_back();return a;}template <typename F>ll binary_search(F check, ll ok, ll ng, bool check_ok = true) {if (check_ok) assert(check(ok));while (abs(ok - ng) > 1) {auto x = (ng + ok) / 2;tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));}return ok;}template <typename F>double binary_search_real(F check, double ok, double ng, int iter = 100) {FOR(iter) {double x = (ok + ng) / 2;tie(ok, ng) = (check(x) ? mp(x, ng) : mp(ok, x));}return (ok + ng) / 2;}template <class T, class S>inline bool chmax(T &a, const S &b) {return (a < b ? a = b, 1 : 0);}template <class T, class S>inline bool chmin(T &a, const S &b) {return (a > b ? a = b, 1 : 0);}// ? は -1vc<int> s_to_vi(const string &S, char first_char) {vc<int> A(S.size());FOR(i, S.size()) { A[i] = (S[i] != '?' ? S[i] - first_char : -1); }return A;}template <typename T, typename U>vector<T> cumsum(vector<U> &A, int off = 1) {int N = A.size();vector<T> B(N + 1);FOR(i, N) { B[i + 1] = B[i] + A[i]; }if (off == 0) B.erase(B.begin());return B;}// stable sorttemplate <typename T>vector<int> argsort(const vector<T> &A) {vector<int> ids(len(A));iota(all(ids), 0);sort(all(ids),[&](int i, int j) { return (A[i] == A[j] ? i < j : A[i] < A[j]); });return ids;}// A[I[0]], A[I[1]], ...template <typename T>vc<T> rearrange(const vc<T> &A, const vc<int> &I) {vc<T> B(len(I));FOR(i, len(I)) B[i] = A[I[i]];return B;}#endif#line 1 "/home/maspy/compro/library/other/io.hpp"// based on yosupo's fastio#include <unistd.h>namespace fastio {#define FASTIO// クラスが read(), print() を持っているかを判定するメタ関数struct has_write_impl {template <class T>static auto check(T &&x) -> decltype(x.write(), std::true_type{});template <class T>static auto check(...) -> std::false_type;};template <class T>class has_write : public decltype(has_write_impl::check<T>(std::declval<T>())) {};struct has_read_impl {template <class T>static auto check(T &&x) -> decltype(x.read(), std::true_type{});template <class T>static auto check(...) -> std::false_type;};template <class T>class has_read : public decltype(has_read_impl::check<T>(std::declval<T>())) {};struct Scanner {FILE *fp;char line[(1 << 15) + 1];size_t st = 0, ed = 0;void reread() {memmove(line, line + st, ed - st);ed -= st;st = 0;ed += fread(line + ed, 1, (1 << 15) - ed, fp);line[ed] = '\0';}bool succ() {while (true) {if (st == ed) {reread();if (st == ed) return false;}while (st != ed && isspace(line[st])) st++;if (st != ed) break;}if (ed - st <= 50) {bool sep = false;for (size_t i = st; i < ed; i++) {if (isspace(line[i])) {sep = true;break;}}if (!sep) reread();}return true;}template <class T, enable_if_t<is_same<T, string>::value, int> = 0>bool read_single(T &ref) {if (!succ()) return false;while (true) {size_t sz = 0;while (st + sz < ed && !isspace(line[st + sz])) sz++;ref.append(line + st, sz);st += sz;if (!sz || st != ed) break;reread();}return true;}template <class T, enable_if_t<is_integral<T>::value, int> = 0>bool read_single(T &ref) {if (!succ()) return false;bool neg = false;if (line[st] == '-') {neg = true;st++;}ref = T(0);while (isdigit(line[st])) { ref = 10 * ref + (line[st++] & 0xf); }if (neg) ref = -ref;return true;}template <typename T,typename enable_if<has_read<T>::value>::type * = nullptr>inline bool read_single(T &x) {x.read();return true;}bool read_single(double &ref) {string s;if (!read_single(s)) return false;ref = std::stod(s);return true;}bool read_single(char &ref) {string s;if (!read_single(s) || s.size() != 1) return false;ref = s[0];return true;}template <class T>bool read_single(vector<T> &ref) {for (auto &d: ref) {if (!read_single(d)) return false;}return true;}template <class T, class U>bool read_single(pair<T, U> &p) {return (read_single(p.first) && read_single(p.second));}template <size_t N = 0, typename T>void read_single_tuple(T &t) {if constexpr (N < std::tuple_size<T>::value) {auto &x = std::get<N>(t);read_single(x);read_single_tuple<N + 1>(t);}}template <class... T>bool read_single(tuple<T...> &tpl) {read_single_tuple(tpl);return true;}void read() {}template <class H, class... T>void read(H &h, T &... t) {bool f = read_single(h);assert(f);read(t...);}Scanner(FILE *fp) : fp(fp) {}};struct Printer {Printer(FILE *_fp) : fp(_fp) {}~Printer() { flush(); }static constexpr size_t SIZE = 1 << 15;FILE *fp;char line[SIZE], small[50];size_t pos = 0;void flush() {fwrite(line, 1, pos, fp);pos = 0;}void write(const char val) {if (pos == SIZE) flush();line[pos++] = val;}template <class T, enable_if_t<is_integral<T>::value, int> = 0>void write(T val) {if (pos > (1 << 15) - 50) flush();if (val == 0) {write('0');return;}if (val < 0) {write('-');val = -val; // todo min}size_t len = 0;while (val) {small[len++] = char(0x30 | (val % 10));val /= 10;}for (size_t i = 0; i < len; i++) { line[pos + i] = small[len - 1 - i]; }pos += len;}void write(const string s) {for (char c: s) write(c);}void write(const char *s) {size_t len = strlen(s);for (size_t i = 0; i < len; i++) write(s[i]);}void write(const double x) {ostringstream oss;oss << fixed << setprecision(15) << x;string s = oss.str();write(s);}void write(const long double x) {ostringstream oss;oss << fixed << setprecision(15) << x;string s = oss.str();write(s);}template <typename T,typename enable_if<has_write<T>::value>::type * = nullptr>inline void write(T x) {x.write();}template <class T>void write(const vector<T> val) {auto n = val.size();for (size_t i = 0; i < n; i++) {if (i) write(' ');write(val[i]);}}template <class T, class U>void write(const pair<T, U> val) {write(val.first);write(' ');write(val.second);}template <size_t N = 0, typename T>void write_tuple(const T t) {if constexpr (N < std::tuple_size<T>::value) {if constexpr (N > 0) { write(' '); }const auto x = std::get<N>(t);write(x);write_tuple<N + 1>(t);}}template <class... T>bool write(tuple<T...> tpl) {write_tuple(tpl);return true;}template <class T, size_t S>void write(const array<T, S> val) {auto n = val.size();for (size_t i = 0; i < n; i++) {if (i) write(' ');write(val[i]);}}void write(i128 val) {string s;bool negative = 0;if (val < 0) {negative = 1;val = -val;}while (val) {s += '0' + int(val % 10);val /= 10;}if (negative) s += "-";reverse(all(s));if (len(s) == 0) s = "0";write(s);}};Scanner scanner = Scanner(stdin);Printer printer = Printer(stdout);void flush() { printer.flush(); }void print() { printer.write('\n'); }template <class Head, class... Tail>void print(Head &&head, Tail &&... tail) {printer.write(head);if (sizeof...(Tail)) printer.write(' ');print(forward<Tail>(tail)...);}void read() {}template <class Head, class... Tail>void read(Head &head, Tail &... tail) {scanner.read(head);read(tail...);}} // namespace fastiousing fastio::print;using fastio::flush;using fastio::read;#define INT(...) \int __VA_ARGS__; \read(__VA_ARGS__)#define LL(...) \ll __VA_ARGS__; \read(__VA_ARGS__)#define STR(...) \string __VA_ARGS__; \read(__VA_ARGS__)#define CHAR(...) \char __VA_ARGS__; \read(__VA_ARGS__)#define DBL(...) \double __VA_ARGS__; \read(__VA_ARGS__)#define VEC(type, name, size) \vector<type> name(size); \read(name)#define VV(type, name, h, w) \vector<vector<type>> name(h, vector<type>(w)); \read(name)void YES(bool t = 1) { print(t ? "YES" : "NO"); }void NO(bool t = 1) { YES(!t); }void Yes(bool t = 1) { print(t ? "Yes" : "No"); }void No(bool t = 1) { Yes(!t); }void yes(bool t = 1) { print(t ? "yes" : "no"); }void no(bool t = 1) { yes(!t); }#line 2 "/home/maspy/compro/library/ds/segtree/lazy_segtree.hpp"template <typename ActedMonoid>struct Lazy_SegTree {using AM = ActedMonoid;using MX = typename AM::Monoid_X;using MA = typename AM::Monoid_A;using X = typename MX::value_type;using A = typename MA::value_type;int n, log, size;vc<X> dat;vc<A> laz;Lazy_SegTree() {}Lazy_SegTree(int n) { build(n); }template <typename F>Lazy_SegTree(int n, F f) {build(n, f);}Lazy_SegTree(const vc<X>& v) { build(v); }void build(int m) {build(m, [](int i) -> X { return MX::unit(); });}void build(const vc<X>& v) {build(len(v), [&](int i) -> X { return v[i]; });}template <typename F>void build(int m, F f) {n = m, log = 1;while ((1 << log) < n) ++log;size = 1 << log;dat.assign(size << 1, MX::unit());laz.assign(size, MA::unit());FOR(i, n) dat[size + i] = f(i);FOR_R(i, 1, size) update(i);}void update(int k) { dat[k] = MX::op(dat[2 * k], dat[2 * k + 1]); }void set(int p, X x) {assert(0 <= p && p < n);p += size;for (int i = log; i >= 1; i--) push(p >> i);dat[p] = x;for (int i = 1; i <= log; i++) update(p >> i);}void multiply(int p, const X& x) {assert(0 <= p && p < n);p += size;for (int i = log; i >= 1; i--) push(p >> i);dat[p] = MX::op(dat[p], x);for (int i = 1; i <= log; i++) update(p >> i);}X get(int p) {assert(0 <= p && p < n);p += size;for (int i = log; i >= 1; i--) push(p >> i);return dat[p];}vc<X> get_all() {FOR(k, 1, size) { push(k); }return {dat.begin() + size, dat.begin() + size + n};}X prod(int l, int r) {assert(0 <= l && l <= r && r <= n);if (l == r) return MX::unit();l += size, r += size;for (int i = log; i >= 1; i--) {if (((l >> i) << i) != l) push(l >> i);if (((r >> i) << i) != r) push((r - 1) >> i);}X xl = MX::unit(), xr = MX::unit();while (l < r) {if (l & 1) xl = MX::op(xl, dat[l++]);if (r & 1) xr = MX::op(dat[--r], xr);l >>= 1, r >>= 1;}return MX::op(xl, xr);}X prod_all() { return dat[1]; }void apply(int l, int r, A a) {assert(0 <= l && l <= r && r <= n);if (l == r) return;l += size, r += size;for (int i = log; i >= 1; i--) {if (((l >> i) << i) != l) push(l >> i);if (((r >> i) << i) != r) push((r - 1) >> i);}int l2 = l, r2 = r;while (l < r) {if (l & 1) apply_at(l++, a);if (r & 1) apply_at(--r, a);l >>= 1, r >>= 1;}l = l2, r = r2;for (int i = 1; i <= log; i++) {if (((l >> i) << i) != l) update(l >> i);if (((r >> i) << i) != r) update((r - 1) >> i);}}template <typename F>int max_right(const F check, int l) {assert(0 <= l && l <= n);assert(check(MX::unit()));if (l == n) return n;l += size;for (int i = log; i >= 1; i--) push(l >> i);X sm = MX::unit();do {while (l % 2 == 0) l >>= 1;if (!check(MX::op(sm, dat[l]))) {while (l < size) {push(l);l = (2 * l);if (check(MX::op(sm, dat[l]))) { sm = MX::op(sm, dat[l++]); }}return l - size;}sm = MX::op(sm, dat[l++]);} while ((l & -l) != l);return n;}template <typename F>int min_left(const F check, int r) {assert(0 <= r && r <= n);assert(check(MX::unit()));if (r == 0) return 0;r += size;for (int i = log; i >= 1; i--) push((r - 1) >> i);X sm = MX::unit();do {r--;while (r > 1 && (r % 2)) r >>= 1;if (!check(MX::op(dat[r], sm))) {while (r < size) {push(r);r = (2 * r + 1);if (check(MX::op(dat[r], sm))) { sm = MX::op(dat[r--], sm); }}return r + 1 - size;}sm = MX::op(dat[r], sm);} while ((r & -r) != r);return 0;}private:void apply_at(int k, A a) {ll sz = 1 << (log - topbit(k));dat[k] = AM::act(dat[k], a, sz);if (k < size) laz[k] = MA::op(laz[k], a);}void push(int k) {if (laz[k] == MA::unit()) return;apply_at(2 * k, laz[k]), apply_at(2 * k + 1, laz[k]);laz[k] = MA::unit();}};#line 2 "/home/maspy/compro/library/graph/tree.hpp"#line 2 "/home/maspy/compro/library/graph/base.hpp"template <typename T>struct Edge {int frm, to;T cost;int id;};template <typename T = int, bool directed = false>struct Graph {int N, M;using cost_type = T;using edge_type = Edge<T>;vector<edge_type> edges;vector<int> indptr;vector<edge_type> csr_edges;vc<int> vc_deg, vc_indeg, vc_outdeg;bool prepared;class OutgoingEdges {public:OutgoingEdges(const Graph* G, int l, int r) : G(G), l(l), r(r) {}const edge_type* begin() const {if (l == r) { return 0; }return &G->csr_edges[l];}const edge_type* end() const {if (l == r) { return 0; }return &G->csr_edges[r];}private:const Graph* G;int l, r;};bool is_prepared() { return prepared; }constexpr bool is_directed() { return directed; }Graph() : N(0), M(0), prepared(0) {}Graph(int N) : N(N), M(0), prepared(0) {}void build(int n) {N = n, M = 0;prepared = 0;edges.clear();indptr.clear();csr_edges.clear();vc_deg.clear();vc_indeg.clear();vc_outdeg.clear();}void add(int frm, int to, T cost = 1, int i = -1) {assert(!prepared);assert(0 <= frm && 0 <= to && to < N);if (i == -1) i = M;auto e = edge_type({frm, to, cost, i});edges.eb(e);++M;}// wt, offvoid read_tree(bool wt = false, int off = 1) { read_graph(N - 1, wt, off); }void read_graph(int M, bool wt = false, int off = 1) {for (int m = 0; m < M; ++m) {INT(a, b);a -= off, b -= off;if (!wt) {add(a, b);} else {T c;read(c);add(a, b, c);}}build();}void build() {assert(!prepared);prepared = true;indptr.assign(N + 1, 0);for (auto&& e: edges) {indptr[e.frm + 1]++;if (!directed) indptr[e.to + 1]++;}for (int v = 0; v < N; ++v) { indptr[v + 1] += indptr[v]; }auto counter = indptr;csr_edges.resize(indptr.back() + 1);for (auto&& e: edges) {csr_edges[counter[e.frm]++] = e;if (!directed)csr_edges[counter[e.to]++] = edge_type({e.to, e.frm, e.cost, e.id});}}OutgoingEdges operator[](int v) const {assert(prepared);return {this, indptr[v], indptr[v + 1]};}vc<int> deg_array() {if (vc_deg.empty()) calc_deg();return vc_deg;}pair<vc<int>, vc<int>> deg_array_inout() {if (vc_indeg.empty()) calc_deg_inout();return {vc_indeg, vc_outdeg};}int deg(int v) {if (vc_deg.empty()) calc_deg();return vc_deg[v];}int in_deg(int v) {if (vc_indeg.empty()) calc_deg_inout();return vc_indeg[v];}int out_deg(int v) {if (vc_outdeg.empty()) calc_deg_inout();return vc_outdeg[v];}void debug() {print("Graph");if (!prepared) {print("frm to cost id");for (auto&& e: edges) print(e.frm, e.to, e.cost, e.id);} else {print("indptr", indptr);print("frm to cost id");FOR(v, N) for (auto&& e: (*this)[v]) print(e.frm, e.to, e.cost, e.id);}}vc<int> new_idx;vc<bool> used_e;// G における頂点 V[i] が、新しいグラフで i になるようにする// {G, es}pair<Graph<T, directed>, vc<int>> rearrange(vc<int> V) {if (len(new_idx) != N) new_idx.assign(N, -1);if (len(used_e) != M) used_e.assign(M, 0);int n = len(V);FOR(i, n) new_idx[V[i]] = i;Graph<T, directed> G(n);vc<int> es;FOR(i, n) {for (auto&& e: (*this)[V[i]]) {if (used_e[e.id]) continue;int a = e.frm, b = e.to;if (new_idx[a] != -1 && new_idx[b] != -1) {used_e[e.id] = 1;G.add(new_idx[a], new_idx[b], e.cost);es.eb(e.id);}}}FOR(i, n) new_idx[V[i]] = -1;for (auto&& eid: es) used_e[eid] = 0;G.build();return {G, es};}private:void calc_deg() {assert(vc_deg.empty());vc_deg.resize(N);for (auto&& e: edges) vc_deg[e.frm]++, vc_deg[e.to]++;}void calc_deg_inout() {assert(vc_indeg.empty());vc_indeg.resize(N);vc_outdeg.resize(N);for (auto&& e: edges) { vc_indeg[e.to]++, vc_outdeg[e.frm]++; }}};#line 4 "/home/maspy/compro/library/graph/tree.hpp"// HLD euler tour をとっていろいろ。// 木以外、非連結でも dfs 順序や親がとれる。template <typename GT>struct Tree {using Graph_type = GT;GT &G;using WT = typename GT::cost_type;int N;vector<int> LID, RID, head, V, parent, VtoE;vc<int> depth;vc<WT> depth_weighted;Tree(GT &G, int r = 0, bool hld = 1) : G(G) { build(r, hld); }void build(int r = 0, bool hld = 1) {if (r == -1) return; // build を遅延したいときN = G.N;LID.assign(N, -1), RID.assign(N, -1), head.assign(N, r);V.assign(N, -1), parent.assign(N, -1), VtoE.assign(N, -1);depth.assign(N, -1), depth_weighted.assign(N, 0);assert(G.is_prepared());int t1 = 0;dfs_sz(r, -1, hld);dfs_hld(r, t1);}void dfs_sz(int v, int p, bool hld) {auto &sz = RID;parent[v] = p;depth[v] = (p == -1 ? 0 : depth[p] + 1);sz[v] = 1;int l = G.indptr[v], r = G.indptr[v + 1];auto &csr = G.csr_edges;// 使う辺があれば先頭にするfor (int i = r - 2; i >= l; --i) {if (hld && depth[csr[i + 1].to] == -1) swap(csr[i], csr[i + 1]);}int hld_sz = 0;for (int i = l; i < r; ++i) {auto e = csr[i];if (depth[e.to] != -1) continue;depth_weighted[e.to] = depth_weighted[v] + e.cost;VtoE[e.to] = e.id;dfs_sz(e.to, v, hld);sz[v] += sz[e.to];if (hld && chmax(hld_sz, sz[e.to]) && l < i) { swap(csr[l], csr[i]); }}}void dfs_hld(int v, int ×) {LID[v] = times++;RID[v] += LID[v];V[LID[v]] = v;bool heavy = true;for (auto &&e: G[v]) {if (depth[e.to] <= depth[v]) continue;head[e.to] = (heavy ? head[v] : e.to);heavy = false;dfs_hld(e.to, times);}}vc<int> heavy_path_at(int v) {vc<int> P = {v};while (1) {int a = P.back();for (auto &&e: G[a]) {if (e.to != parent[a] && head[e.to] == v) {P.eb(e.to);break;}}if (P.back() == a) break;}return P;}int heavy_child(int v) {int k = LID[v] + 1;if (k == N) return -1;int w = V[k];return (parent[w] == v ? w : -1);}int e_to_v(int eid) {auto e = G.edges[eid];return (parent[e.frm] == e.to ? e.frm : e.to);}int v_to_e(int v) { return VtoE[v]; }int ELID(int v) { return 2 * LID[v] - depth[v]; }int ERID(int v) { return 2 * RID[v] - depth[v] - 1; }/* k: 0-indexed */int LA(int v, int k) {assert(k <= depth[v]);while (1) {int u = head[v];if (LID[v] - k >= LID[u]) return V[LID[v] - k];k -= LID[v] - LID[u] + 1;v = parent[u];}}int la(int u, int v) { return LA(u, v); }int LCA(int u, int v) {for (;; v = parent[head[v]]) {if (LID[u] > LID[v]) swap(u, v);if (head[u] == head[v]) return u;}}// root を根とした場合の lcaint LCA_root(int u, int v, int root) {return LCA(u, v) ^ LCA(u, root) ^ LCA(v, root);}int lca(int u, int v) { return LCA(u, v); }int lca_root(int u, int v, int root) { return LCA_root(u, v, root); }int subtree_size(int v, int root = -1) {if (root == -1) return RID[v] - LID[v];if (v == root) return N;int x = jump(v, root, 1);if (in_subtree(v, x)) return RID[v] - LID[v];return N - RID[x] + LID[x];}int dist(int a, int b) {int c = LCA(a, b);return depth[a] + depth[b] - 2 * depth[c];}WT dist_weighted(int a, int b) {int c = LCA(a, b);return depth_weighted[a] + depth_weighted[b] - WT(2) * depth_weighted[c];}// a is in bbool in_subtree(int a, int b) { return LID[b] <= LID[a] && LID[a] < RID[b]; }int jump(int a, int b, ll k) {if (k == 1) {if (a == b) return -1;return (in_subtree(b, a) ? LA(b, depth[b] - depth[a] - 1) : parent[a]);}int c = LCA(a, b);int d_ac = depth[a] - depth[c];int d_bc = depth[b] - depth[c];if (k > d_ac + d_bc) return -1;if (k <= d_ac) return LA(a, k);return LA(b, d_ac + d_bc - k);}vc<int> collect_child(int v) {vc<int> res;for (auto &&e: G[v])if (e.to != parent[v]) res.eb(e.to);return res;}vc<pair<int, int>> get_path_decomposition(int u, int v, bool edge) {// [始点, 終点] の"閉"区間列。vc<pair<int, int>> up, down;while (1) {if (head[u] == head[v]) break;if (LID[u] < LID[v]) {down.eb(LID[head[v]], LID[v]);v = parent[head[v]];} else {up.eb(LID[u], LID[head[u]]);u = parent[head[u]];}}if (LID[u] < LID[v]) down.eb(LID[u] + edge, LID[v]);elif (LID[v] + edge <= LID[u]) up.eb(LID[u], LID[v] + edge);reverse(all(down));up.insert(up.end(), all(down));return up;}vc<int> restore_path(int u, int v) {vc<int> P;for (auto &&[a, b]: get_path_decomposition(u, v, 0)) {if (a <= b) {FOR(i, a, b + 1) P.eb(V[i]);} else {FOR_R(i, b, a + 1) P.eb(V[i]);}}return P;}};#line 3 "/home/maspy/compro/library/graph/ds/lazy_tree_monoid.hpp"template <typename TREE, typename ActedMonoid, bool edge>struct Lazy_Tree_Monoid {using MX = typename ActedMonoid::Monoid_X;using MA = typename ActedMonoid::Monoid_A;static_assert(MX::commute);using X = typename MX::value_type;using A = typename MA::value_type;TREE &tree;int N;Lazy_SegTree<ActedMonoid> seg;Lazy_Tree_Monoid(TREE &tree) : tree(tree), N(tree.N) {build([](int i) -> X { return MX::unit(); });}Lazy_Tree_Monoid(TREE &tree, vc<X> &dat) : tree(tree), N(tree.N) {build([&](int i) -> X { return dat[i]; });}template <typename F>Lazy_Tree_Monoid(TREE &tree, F f) : tree(tree), N(tree.N) {build(f);}template <typename F>void build(F f) {vc<X> seg_raw(N, MX::unit());if (!edge) {seg.build(N, [&](int i) -> X { return f(tree.V[i]); });} else {seg.build(N, [&](int i) -> X {return (i == 0 ? MX::unit() : f(tree.v_to_e(tree.V[i])));});}}void set(int i, X x) {if constexpr (edge) i = tree.e_to_v(i);i = tree.LID[i];seg.set(i, x);}X get(int v) { return seg.get(tree.LID[v]); }vc<X> get_all() {static_assert(!edge); // 単に未実装なのでvc<X> dat = seg.get_all();vc<X> res(N);FOR(v, N) res[v] = dat[tree.LID[v]];return res;}X prod_path(int u, int v) {auto pd = tree.get_path_decomposition(u, v, edge);X val = MX::unit();for (auto &&[a, b]: pd) {X x = get_prod(a, b);val = MX::op(val, x);}return val;}X prod_subtree(int u) {int l = tree.LID[u], r = tree.RID[u];return seg.prod(l + edge, r);}X prod_all() { return seg.prod_all(); }void apply_path(int u, int v, A a) {auto pd = tree.get_path_decomposition(u, v, edge);for (auto &&[x, y]: pd) {int l = min(x, y), r = max(x, y);seg.apply(l, r + 1, a);}}void apply_subtree(int u, A a) {int l = tree.LID[u], r = tree.RID[u];return seg.apply(l + edge, r, a);}template <class F>int max_path(F check, int u, int v) {if constexpr (edge) return max_path_edge(check, u, v);if (!check(prod_path(u, u))) return -1;auto pd = tree.get_path_decomposition(u, v, edge);X val = MX::unit();for (auto &&[a, b]: pd) {X x = get_prod(a, b);if (check(MX::op(val, x))) {val = MX::op(val, x);u = (tree.V[b]);continue;}auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };if (a <= b) {// 下りauto i = seg.max_right(check_tmp, a);return (i == a ? u : tree.V[i - 1]);} else {// 上りauto i = seg.min_left(check_tmp, a + 1);if (i == a + 1) return u;return tree.V[i];}}return v;}// closed range [a,b] を heavy path の形式に応じてinline X get_prod(int a, int b) {return (a <= b ? seg.prod(a, b + 1) : seg.prod(b, a + 1));}private:template <class F>int max_path_edge(F &check, int u, int v) {assert(edge);if (!check(MX::unit())) return -1;int lca = tree.lca(u, v);auto pd = tree.get_path_decomposition(u, lca, edge);X val = MX::unit();// climbfor (auto &&[a, b]: pd) {assert(a >= b);X x = seg.prod(b, a + 1);if (check(MX::op(val, x))) {val = MX::op(val, x);u = (tree.parent[tree.V[b]]);continue;}auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };auto i = seg.min_left(check_tmp, a + 1);if (i == a + 1) return u;return tree.parent[tree.V[i]];}// downpd = tree.get_path_decomposition(lca, v, edge);for (auto &&[a, b]: pd) {assert(a <= b);X x = seg.prod(a, b + 1);if (check(MX::op(val, x))) {val = MX::op(val, x);u = (tree.V[b]);continue;}auto check_tmp = [&](X x) -> bool { return check(MX::op(val, x)); };auto i = seg.max_right(check_tmp, a);return (i == a ? u : tree.V[i - 1]);}return v;}};#line 2 "/home/maspy/compro/library/alg/monoid/add.hpp"template <typename X>struct Monoid_Add {using value_type = X;static constexpr X op(const X &x, const X &y) noexcept { return x + y; }static constexpr X inverse(const X &x) noexcept { return -x; }static constexpr X power(const X &x, ll n) noexcept { return X(n) * x; }static constexpr X unit() { return X(0); }static constexpr bool commute = true;};#line 2 "/home/maspy/compro/library/alg/monoid/min.hpp"template <typename E>struct Monoid_Min {using X = E;using value_type = X;static constexpr X op(const X &x, const X &y) noexcept { return min(x, y); }static constexpr X unit() { return infty<E>; }static constexpr bool commute = true;};#line 3 "/home/maspy/compro/library/alg/acted_monoid/min_add.hpp"template <typename E>struct ActedMonoid_Min_Add {using Monoid_X = Monoid_Min<E>;using Monoid_A = Monoid_Add<E>;using X = typename Monoid_X::value_type;using A = typename Monoid_A::value_type;static constexpr X act(const X &x, const A &a, const ll &size) {if (x == infty<E>) return x;return x + a;}};#line 1 "/home/maspy/compro/library/ds/fastset.hpp"/* 64分木。insert, erase[]での存在判定next, prev*/struct FastSet {using uint = unsigned;using ull = unsigned long long;int bsr(ull x) { return 63 - __builtin_clzll(x); }int bsf(ull x) { return __builtin_ctzll(x); }static constexpr uint B = 64;int n, lg;vector<vector<ull>> seg;FastSet(int _n) : n(_n) {do {seg.push_back(vector<ull>((_n + B - 1) / B));_n = (_n + B - 1) / B;} while (_n > 1);lg = int(seg.size());}bool operator[](int i) const { return (seg[0][i / B] >> (i % B) & 1) != 0; }void insert(int i) {for (int h = 0; h < lg; h++) {seg[h][i / B] |= 1ULL << (i % B);i /= B;}}void add(int i) { insert(i); }void erase(int i) {for (int h = 0; h < lg; h++) {seg[h][i / B] &= ~(1ULL << (i % B));if (seg[h][i / B]) break;i /= B;}}void remove(int i) { erase(i); }// x以上最小の要素を返す。存在しなければ n。int next(int i) {chmax(i, 0);if (i >= n) return n;for (int h = 0; h < lg; h++) {if (i / B == seg[h].size()) break;ull d = seg[h][i / B] >> (i % B);if (!d) {i = i / B + 1;continue;}// findi += bsf(d);for (int g = h - 1; g >= 0; g--) {i *= B;i += bsf(seg[g][i / B]);}return i;}return n;}// x以下最大の要素を返す。存在しなければ -1。int prev(int i) {if (i < 0) return -1;if (i >= n) i = n - 1;for (int h = 0; h < lg; h++) {if (i == -1) break;ull d = seg[h][i / B] << (63 - i % 64);if (!d) {i = i / B - 1;continue;}// findi += bsr(d) - (B - 1);for (int g = h - 1; g >= 0; g--) {i *= B;i += bsr(seg[g][i / B]);}return i;}return -1;}// [l, r)template <typename F>void enumerate(int l, int r, F f) {int x = l - 1;while (1) {x = next(x + 1);if (x >= r) break;f(x);}}void debug() {string s;for (int i = 0; i < n; ++i) s += ((*this)[i] ? '1' : '0');print(s);}};#line 6 "main.cpp"void solve() {LL(N, Q);Graph<ll, 0> G(N);G.read_tree(1);Tree<decltype(G)> tree(G);vi cap(N);cap[0] = infty<ll>;for (auto&& e: G.edges) {ll a = e.frm, b = e.to, c = e.cost;if (tree.parent[b] == a) swap(a, b);cap[a] = c;}using AM = ActedMonoid_Min_Add<ll>;Lazy_Tree_Monoid<decltype(tree), AM, false> seg(tree, cap);FastSet ss(N);FOR(i, N) ss.insert(i);vi put(N);ll now = N;auto remove = [&](int v) -> void {int L = tree.LID[v], R = tree.RID[v];ss.enumerate(L, R, [&](int i) -> void {ss.erase(i);int v = tree.V[i];// print("remove", v);seg.apply_path(0, v, +put[v]);seg.set(v, infty<ll>);--now;});};FOR(Q) {LL(t);// print(seg.get_all());if (t == 1) {LL(v, x);--v;put[v] += x;seg.apply_path(v, 0, -x);if (seg.get(v) <= 0) {remove(v);continue;}int w = seg.max_path([&](auto e) -> bool { return e > 0; }, v, 0);if (w == 0) continue;w = tree.parent[w];remove(w);}if (t == 2) { print(now); }}}signed main() {int T = 1;// INT(T);FOR(T) solve();return 0;}